The Boolean Satisfiability (SAT) Problem, SAT Solver Technology, and Equivalence Verification

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Lectures: Aug 21, 2017 onwards
What is Boolean Satisfiability (SAT)?

- Given a Boolean formula $f(x_1, \ldots, x_n)$, find an assignment to x_1, \ldots, x_n s.t. $f = 1$
- Otherwise, prove that such an assignment does not exist: problem is infeasible!
- There may be many SAT assignments: find an assignment, or enumerate all assignments (ALL-SAT)
- The formula f is given in conjunctive normal form (CNF), SAT solvers operate CNF representation of f
- Any decidable decision problem can be formulated and solved as SAT
- SAT is fundamental, has wide applications in many areas: hardware & software verification, graph theory, combinatorial optimization, artificial intelligence, VLSI design automation, cryptography/cryptanalysis, planning, scheduling, many more....
Simulation vector generation: Given the circuit below, find an assignment to primary inputs s.t. $u = 1$, $v = 1$, $w = 0$, or prove that one does not exist.

Translate the circuit into CNF, and solve SAT.
SAT in Equivalence checking

- Prove infeasibility of the miter!
 - Find an assignment to the inputs s.t. \((F \neq G) = 1\) (bug)
 - If no assignment (infeasible), circuits are equivalent
- Model checking: find an assignment s.t. a property is satisfied/falsified

\[
\text{Specification Model}
\]

\[
\text{Implementation}
\]

Is \((F! = G)\) ever TRUE?
A Boolean formula \(f(x_1, \ldots, x_n) \) over propositional variables
\(x_1, \ldots, x_n \in \{0, 1\} \), using propositional connectives \(\neg, \lor, \land \), parenthesis, and implications \(\implies, \iff \)

Example: \(f = ((\neg x_1 \land x_2) \lor x_3) \land (\neg x_2 \lor x_3) \)

A CNF formula representation of \(f \) is:

- a conjunction of clauses
- each clause is a disjunction of literals
- each literal is a variable or its negation (complement)

Example: \(f = (\neg x_1 \lor x_2)(\neg x_2 \lor x_3 \lor \neg x_4)(x_1 \lor x_2 \lor x_3 \lor \neg x_4) \)

Alternate notation \(f = (x'_1 + x_2)(x'_2 + x_3 + x'_4)(x_1 + x_2 + x_3 + x'_4) \)

Any Boolean formula (circuit) can be encoded into CNF
Encode a Circuit to CNF

\[f = a \lor b \]

\[f \iff a \lor b \] (equality is a double-implication)

CNF:

\[(f \implies (a \lor b)) \land ((a \lor b) \implies f)\]

\[(\neg f \lor (a \lor b)) \land (\neg (a \lor b) \lor f) \]

\[(\neg f \lor (a \lor b)) \land ((\neg a \land \neg b) \lor f) \] (CNF?)

\[(\neg f \lor (a \lor b)) \land (\neg a \lor f)(\neg b \lor f) \]
Encode Circuit to CNF

Circuit to CNF: Implication to Clauses

In general, if \(f = OP(a, b) \), the CNF representation is:

- \(f \iff OP(a, b) \), further simplified as:
- \((f \implies OP(a, b)) \land (OP(a, b) \implies f)\)

Translate implication to Boolean formula: \(a \implies b \) means \((a' + b)\) is TAUTOLOGY.

- For \(f = a \land b \), CNF: \((\neg f + a)(\neg f + b)(\neg a + \neg b + f)\)
- For \(f = a \oplus b \), CNF:
 \((\neg f + a + b)(f + \neg a + b)(f + a + \neg b)(\neg f + \neg a + \neg b)\)
- For the previous circuit, we need to further constrain \(u = 1, \nu = 1, w = 0 \) to solve the simulation vector generation problem. Encode constraints \(u = 1, \nu = 1, w = 0 \) into CNF as \((u)(\nu)(\neg w')\)
- Conjunct ALL clauses (constraints) and invoke a SAT solver to find a solution
In general, SAT is **NP-complete**. No polynomial-time algorithm exists to solve SAT (in theory).

The restricted 2-SAT problem, where every clause contains only 2 literals, can be solved in polynomial time.

Circuit-to-CNF: Recall, 2-input AND/OR gates need a 3-literal clause for modeling the constraint.

Circuit-SAT is therefore also NP-complete.

However, modern SAT solvers are a success story in Computer Science and Engineering. Efficient heuristics and implementation tricks make SAT solvers very efficient.

EDA gave a big impetus to SAT solving

Many large problems can be solved very quickly by SAT solvers.

So, how is a CNF SAT formula solved?
An assignment can make a clause satisfied or unsatisfied

Since \(f = C_1 \land C_2 \land \cdots \land C_n \), try to satisfy each clause \(C_i \)

The first approach by Davis & Putnam [DP 1960]: based on unit clause, pure literal and resolution rules

Later Davis, Logemann, Loveland [DLL 1962] proposed an alternative backtrack-based search algorithm

These algorithms are now known as DPLL algorithms

Modern solvers are highly sophisticated: conflict-driven clause learning (CDCL) and search-space pruning, among many efficient heuristics
Basic Processing for SAT solving

Satisfy a clause

A clause is satisfied if any literal is assigned to 1. E.g. for $x_2 = 0$, clause $(x_1 \lor \neg x_2 \lor \neg x_3) = 1$.

Satisfy a clause

A clause is unsatisfied if all literals are assigned to 0. E.g. the assignment of $x_1 = 0, x_2 = x_3 = 1$, makes clause $(x_1 \lor \neg x_2 \lor \neg x_3)$ unsatisfied.

Unit clause

A clause containing a single unassigned literal, and all other literals assigned to 0. E.g., the assignment $x_1 = 0, x_3 = 1$, makes $(x_1 \lor \neg x_2 \lor \neg x_3) = (0 \lor \neg x_2 \lor 0)$ a unit clause. Unit clause forces a necessary assignment $(x_2 = 0)$ for the formula to be TRUE.

- Formula f is satisfied, if all clauses are satisfied; f is unsatisfied, if at least one clause is unsatisfied.
A literal is pure if it appears only as a positive literal, or only as a negative literal.

- \(f = (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4) \)
- \(x_1, x_3 \) are pure literals.

Clauses containing pure literals can be easily satisfied.

- Assign pure literals to the values that satisfy the clauses
- Pure literals do not cause inconsistent value assignments (or conflicts) to variables.

Iteratively apply **unit clause propagation** and **pure literal simplification** on the CNF formula.
Resolution Rule: Given clauses \((x \lor \alpha)\) and \((\neg x \lor \beta)\), infer \((\alpha \lor \beta)\)

\[RES(x \lor \alpha, \neg x \lor \beta) = (\alpha \lor \beta) \]

The DP algorithm was resolution-based.
Given CNF formula f, deduce if it is SAT or UNSAT
Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

- Complete algorithm: Iterate the following steps
Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

- Complete algorithm: Iterate the following steps
 - Select variable x that is not pure (both x, $\neg x$ exist)
Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

- Complete algorithm: Iterate the following steps
 - Select variable x that is not pure (both x, $\neg x$ exist)
 - Apply resolution rules between every pair of clauses $(x \lor \alpha)$ and $(\neg x \lor \beta)$; simplify f
Given CNF formula f, deduce if it is SAT or UNSAT

- **Complete algorithm:** Iterate the following steps
 - Select variable x that is not pure (both x, $\neg x$ exist)
 - Apply resolution rules between every pair of clauses $(x \lor \alpha)$ and $(\neg x \lor \beta)$; simplify f
 - Remove clauses with pure literals x or $\neg x$
Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

- **Complete algorithm:** Iterate the following steps
 - Select variable x that is not pure (both x, $\neg x$ exist)
 - Apply resolution rules between every pair of clauses ($x \lor \alpha$) and ($\neg x \lor \beta$); simplify f
 - Remove clauses with pure literals x or $\neg x$
 - Apply pure literal rules and unit propagation
Resolution-based SAT

Given CNF formula \(f \), deduce if it is SAT or UNSAT

- Complete algorithm: Iterate the following steps
 - Select variable \(x \) that is not pure (both \(x \), \(\neg x \) exist)
 - Apply resolution rules between every pair of clauses \((x \lor \alpha) \) and \((\neg x \lor \beta) \); simplify \(f \)
 - Remove clauses with pure literals \(x \) or \(\neg x \)
 - Apply pure literal rules and unit propagation

Terminate when empty clause (UNSAT) or empty formula (SAT)
Deduce SAT/UNSAT by Resolution: Example

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]
Deduce SAT/UNSAT by Resolution: Example

\((x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\)

\((\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\)
Deduce SAT/UNSAT by Resolution: Example

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[\neg x_2 \lor \neg x_3 \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[\neg x_3 \lor x_3 \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]
Deduce SAT/UNSAT by Resolution: Example

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[(\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[(\neg x_3 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[(x_3)\]
Deduce SAT/UNSAT by Resolution: Example

\[(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[(\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[(\neg x_3 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor \neg x_4)\]

\[(x_3)\]

Satisfiable!
The [DP 1960] approach using resolution was inefficient

Then the [DLL 1962] was introduced:

- Select a variable x, assign either $x = 0$ or $x = 1$ [decision assignment]
- Simplify formula with unit propagation, pure literal rules [deduce]
- If conflict, then backtrack [diagnose]
 - If cannot backtrack further, return UNSAT
- If formula satisfied, return SAT
- Otherwise, proceed with another decision
DPLL Example

\[f = (a + b' + d)(a + b' + e)(b' + d' + e')(a + b + c + d)(a + b + c + d')(a + b + c' + e)(a + b + c' + e') \]
DPLL Example

\[f = (a + b' + d)(a + b' + e)(b' + d' + e')(a + b + c + d)(a + b + c + d')(a + b + c' + e)(a + b + c' + e') \]

\[a = 0 \]
DPLL Example

\[f = (a + b' + d)(a + b' + e)(b' + d' + e')(a + b + c + d)(a + b + c + d')(a + b + c' + e)(a + b + c' + e') \]

\[a = 0, \ b = 1, \ \text{conflict, backtrack, change last decision!} \]
DPLL Example

\[f = (a + b' + d)(a + b' + e)(b' + d' + e')(a + b + c + d)(a + b + c + d')(a + b + c' + e)(a + b + c' + e') \]

\[a = 0, \ b = 0 \]
DPLL Example

\[f = (a + b' + d)(a + b' + e)(b' + d' + e')(a + b + c + d)(a + b + c + d')(a + b + c' + e)(a + b + c' + e') \]

\[a = 0, \ b = 0, \ c = 0, \]
conflict, backtrack!
DPLL Example

\[f = (a + b' + d)(a + b' + e)(b' + d' + e')(a + b + c + d)(a + b + c + d')(a + b + c' + e)(a + b + c' + e') \]

\[a = 1, \ b = 0 \]
Non-chronological Backtracking via CDCL

- Previous example shows a chronological backtrack based binary search
- Modern SAT solvers analyze decisions and conflicts to dynamically learn clauses
 - Conflict Driven Clause Learning (CDCL)
 - Solver learns more clauses, and appends them to the original CNF
 - More constraints help to prune the search
 - Results in a non-chronological backtrack-based search
 - The approach is still complete: Will find SAT, or will prove UNSAT

- There are also “incomplete” solvers, that rely on local search
 - Heuristics to guide the search, but search not exhaustive
 - May find a SAT solution if one exists, but cannot prove UNSAT

- There are also SAT pre-processors
 - Input CNF F_1, output CNF F_2, $\text{size}(F_1) > \text{size}(F_2)$
Conflict-Driven Clause Learning (CDCL) solvers

- Modern CDCL-solvers: based on DPLL, but do quite a bit more
 - Learn new constraints while encountering conflicts
 - Enable non-chronological backtracking, thus pruning search-space
 - Branching heuristics: which variable to branch on ($x_i = 0$? or $x_i = 1$?)
 - Heuristics for search re-starts
 - Efficient management of clause-database: minimize learnt clauses, discard unused learnt clauses

- Concept of CDCL from [GRASP, Joao Marques-Silva and Karem Sakallah]

- Read GRASP report on class website
\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x'_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})
(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)\]
\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x'_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)\]
\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x'_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})
(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)\]
\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)\]
\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)\]
\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})
(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)
\]
Conflict: \((x'_9 \land x_{12} \land x_{13} \land x'_{10} \land x'_{11} \land y_1 \land y_2 \land x_1) \implies \text{FALSE}\)
\[(x_1' + x_2)(x_1' + x_3 + x_9)(x_2' + x_3' + x_4)(x_4' + x_5 + x_{10})(x_4' + x_6 + x_{11})(x_5' + x_6')(x_1 + x_7 + x'_{12})(x_1 + x_8)(x_7' + x_8' + x'_{13})(y_1 + z_1)(y_1 + z_2)\]

Is the learnt Clause = \((x_9 \lor x'_{12} \lor x'_{13} \lor x_{10} \lor x_{11} \lor y_1' \lor y_2' \lor x_1')\)?
CDCL: Analyze the cause of conflict

- From the conflict-node in the implication graph, traverse back to antecedents (or root nodes x_1, x_9, x_{10}, x_{11})
- Note that x_{12}, x_{13}, y_1, y_2 are unreachable
- Conflict clause can be simplified:
 - From $(x_9 \lor x'_{12} \lor x'_{13} \lor x_{10} \lor x_{11} \lor y'_1 \lor y'_2 \lor x'_1)$
 - To $(x_9 \lor x_{10} \lor x_{11} \lor x'_1)$
Conflict-Driven Clause Learning (CDCL) solvers

- Add learnt clause to original CNF
- Chronological backtrack: revert last assignment from $x_1 = 1$ to $x_1 = 0$

$$(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})$$

$$(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)$$

Assignment on Learnt Clause: $(x_9 \lor x_{10} \lor x_{11} \lor x'_1)$
Add learnt clause to original CNF
Chronological backtrack: revert last assignment from $x_1 = 1$ to $x_1 = 0$

\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x'_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})\]
\[(x'_5 + x'_6)(x_1 + x_7 + x_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)\]

Assignment on Learnt Clause: $(x_9 \lor x_{10} \lor x_{11} \lor x'_1)$

$x_1 = 0$ also leads to a conflict. Learn new clause?
Conflict-Driven Clause Learning (CDCL) solvers

\[(x'_1 + x_2)(x'_1 + x_3 + x_9)(x'_2 + x'_3 + x_4)(x'_4 + x_5 + x_{10})(x'_4 + x_6 + x_{11})\]
\[(x'_5 + x'_6)(x_1 + x_7 + x'_{12})(x_1 + x_8)(x'_7 + x'_8 + x'_{13})(y_1 + z_1)(y_2 + z_2)\]

First learnt/conflict clause \(CC_1: (x_9 \lor x_{10} \lor x_{11} \lor x'_1)\)

- New conflict clause also derived from implication graph
- \(CC_2: (x_9 \lor x'_{12} \lor x'_{13} \lor x_{10} \lor x_{11})\)
- Decision on \(x_1, y_1, y_2\) does not affect the CNF SAT!
- Non-Chronological backtrack:
 - To the MAX decision-level in the conflict clause!
 - Backtrack to Decision-Level 3, undo \(x_{10}\) or \(x_{11}\)
CDCL search space pruning

CC₂: \((x₉ \lor x'_{12} \lor x'_{13} \lor x_{10} \lor x_{11})\)
Recent techniques can identify more conflict clauses
Identify unique implication points (UIPs)
Decision heuristics: Branch on high-activity literals [GRASP]
 Activity: A score for every literal
 The number of occurrences of a literal in the formula
As conflict clauses are added, activity changes
After n conflicts, multiply activity by $f < 1$, or rescore
 VSIDS heuristic: Variable State Independent Decaying Sum [CHAFF]
A List of CDCL SAT solvers

- GRASP, circa 1996, from Silva and Sakallah
- zCHAFF 2001, from Princeton, Prof. Sharad Malik
- BerkMin 2002
- MiniSAT, 2004 (?) from Cadence Berkeley Labs
- PicoSAT and Lingeling, from Prof. Armin Biere, Univ. Linz
- Please visit www.satisfiability.org
Extract UNSAT Cores from UNSAT CNF

- **CNF:** $\mathcal{F} = (a' + b')(a' + b)(a + b')(a + b)(x + y)(y + z)$
 - Note that \mathcal{F} is UNSAT
 - Identify a **minimum** number of clauses that make \mathcal{F} UNSAT
 - This subset of clauses is the *UNSAT Core*, or MIN-UNSAT
 - Helps to identify the causes for UNSAT
- $(a' + b')(a' + b)(a + b')(a + b)$ is the UNSAT core in \mathcal{F}
- UNSAT core may not be unique
- UNSAT cores have many applications in verification
- Study of UNSAT cores and applications: Good class project option!
Where does SAT fail?

For hard UNSAT instances, such as equivalence verification

![Diagram of mitering circuits](image)

Figure: Miter the circuits F, G

- Prove UNSAT, or find a counter-example
- Limitations: No internal structural equivalences
- EDA-techniques: Circuit-SAT, AIG-reductions, constraint-learning
How to improve SAT for Circuit Equivalence Verification?

AND-INVERT-GRAPH (AIG) based Reductions!