Nullstellensatz and Boolean Satisfiability
Application of Gröbner Bases for SAT

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

October 25, 2017 onwards
Application of Gröbner Bases to Equivalence Checking and SAT
 Based on Hilbert’s Weak Nullstellensatz result

Interesting application of algebraic geometry over finite fields and Boolean rings $\mathbb{F}_2 = \mathbb{Z}_2$

Main References: [1] [2]
The Weak Nullstellensatz

- The Weak Nullstellensatz reasons about the presence or absence of solutions to an ideal – over algebraically closed fields!

Theorem (Weak Nullstellensatz)

Let \overline{F} be an algebraically closed field. Given ideal $J \subseteq \overline{F}[x_1, \ldots, x_n]$, $V_{\overline{F}}(J) = \emptyset \iff J = \overline{F}[x_1, \ldots, x_n]$.

Theorem

Based on the above notation, $J = \overline{F}[x_1, \ldots, x_n] \iff 1 \in J$.

Theorem

Let G be a reduced Gröbner basis of J. Then $1 \in J \iff G = \{1\}$. Therefore, $V_{\overline{F}}(J) = \emptyset \iff 1 \in J \iff G = \{1\}$.
Weak Nullstellensatz when \mathbb{F} is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. Given ideal $J \subseteq \mathbb{F}[x_1, \ldots, x_n]$, $V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff \text{reducedGB}(J) = \{1\}$.

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J$!

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = \text{GB}(f_1, \ldots, f_s) = \text{GB}(J)$ and see if $G = \{1\}$.
Theorem (Weak Nullstellensatz)

Let \(\mathbb{F} \) be a field and \(\overline{\mathbb{F}} \) be its algebraic closure. Given ideal \(J \subseteq \mathbb{F}[x_1, \ldots, x_n] \), \(\mathcal{V}_F(J) = \emptyset \iff 1 \in J \iff \text{reducedGB}(J) = \{1\} \).

There is no solution over the closure \(\overline{\mathbb{F}} \) iff \(1 \in J \)!

No solution over the closure \(\overline{\mathbb{F}} \) implies no solution over \(\mathbb{F} \) itself.

SAT/UNSAT Checking

Compute reduced \(G = GB(f_1, \ldots, f_s) = GB(J) \) and see if \(G = \{1\} \).

But, what if \(G \neq 1 \)?
Weak Nullstellensatz when \mathbb{F} is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. Given ideal $J \subseteq \mathbb{F}[x_1, \ldots, x_n]$, $V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff \text{reducedGB}(J) = \{1\}$.

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J$!

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = \text{GB}(f_1, \ldots, f_s) = \text{GB}(J)$ and see if $G = \{1\}$.

But, what if $G \neq 1$? Where are the solutions? Somewhere in the closure.... [We don’t know where]
Weak Nullstellensatz

Solution can be here if

\[V_{\overline{F}}(J) \neq \emptyset \]
Demonstrate the difference between $GB(J)$ versus $GB(J + J_0)$ over \mathbb{Z}_2:

Spec: $x_1 = a \lor (\neg a \land b)$

Implementation: $y_1 = a \lor b$

Miter gate: $x_1 \oplus y_1$

Prove Equivalence using Nullstellensatz
From Boolean \mathbb{B} to \mathbb{Z}_2

- Boolean AND-OR-NOT can be mapped to $+, \cdot$ (mod 2)

$$\mathbb{B} \rightarrow \mathbb{F}_2:$$

\[
\begin{align*}
\neg a & \rightarrow a + 1 \pmod{2} \\
\land b & \rightarrow a + b + a \cdot b \pmod{2} \\
\lor b & \rightarrow a \cdot b \pmod{2} \\
\oplus b & \rightarrow a + b \pmod{2}
\end{align*}
\]

where $a, b \in \mathbb{F}_2 = \{0, 1\}$.

(1)
Union and Intersection of Varieties

Definition (Sum/Product of Ideals [3])

If \(I = \langle f_1, \ldots, f_r \rangle \) and \(J = \langle g_1, \ldots, g_s \rangle \) are ideals in \(R \), then the **sum** of \(I \) and \(J \) is defined as \(I + J = \langle f_1, \ldots, f_r, g_1, \ldots, g_s \rangle \). Similarly, the **product** of \(I \) and \(J \) is \(I \cdot J = \langle f_i g_j \mid 1 \leq i \leq r, 1 \leq j \leq s \rangle \).

Theorem (Union and Intersection of Varieties)

If \(I \) and \(J \) are ideals in \(R \), then \(V(I + J) = V(I) \cap V(J) \) and \(V(I \cdot J) = V(I) \cup V(J) \).

Theorem

Finite unions and intersections of varieties are also varieties. Therefore, any finite set of points is a variety of some ideal.
Ideals and Varieties are Dual Concepts

Given a ring \(R = \mathbb{F}[x_1, \ldots, x_n] \), any finite subset \(V \subseteq \mathbb{F}^n \) is a variety. In other words, any finite set of points is a variety.

Finite unions and intersections of a varieties is a variety.

Let \(J_1, J_2 \) be ideals in \(R \). Then,
- \(V(J_1 + J_2) = V(J_1) \cap V(J_2) \)
- \(V(J_1 \cdot J_2) = V(J_1) \cup V(J_2) \)
- If \(J_1 \subset J_2 \), then \(V(J_1) \supset V(J_2) \)
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q.
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q - x = 0$ (vanishing polynomial)
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q

$\forall x \in \mathbb{F}_q, x^q - x = 0$ (vanishing polynomial)

Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q

$\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)

Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$

$J_0 = \text{ the ideal of all vanishing polynomials of } R$
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
 - $J_0 = \text{the ideal of all vanishing polynomials of } R$
- What is $V(J_0)$?
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
 - $J_0 = \text{the ideal of all vanishing polynomials of } R$
- What is $V(J_0)$?
 - What is $V_{\mathbb{F}_q}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q

$\forall x \in \mathbb{F}_q, x^q - x = 0$ (vanishing polynomial)

Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$

J_0 = the ideal of all vanishing polynomials of R

What is $V(J_0)$?

What is $V_{\overline{\mathbb{F}_q}}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?

$V_{\overline{\mathbb{F}_q}}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q

$\forall x \in \mathbb{F}_q, x^q - x = 0$ (vanishing polynomial)

Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$

$J_0 = \text{the ideal of all vanishing polynomials of } R$

What is $V(J_0)$?

What is $V_{\overline{\mathbb{F}}_q}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?

$V_{\overline{\mathbb{F}}_q}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$

For arbitrary ideal J, think of $V(J) \cap \mathbb{F}_q^n$
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
 - $J_0 = \text{the ideal of all vanishing polynomials of } R$
- What is $V(J_0)$?
 - What is $V_{\mathbb{F}_q}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?
 - $V_{\mathbb{F}_q}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$
- For arbitrary ideal J, think of $V(J) \cap \mathbb{F}_q^n$
- Also see Fig. One.1 in my Galois fields book chapter, to understand $V(x^4 - x)$ versus $V(x^{16} - x)$ [explained in class]
The Weak Nullstellensatz over Finite Fields

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}}_q$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$.
The Weak Nullstellensatz over Finite Fields

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}_q}$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$ if and only if $\overline{\mathbb{F}_q}$.

\iff
The Weak Nullstellensatz over Finite Fields

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}}_q$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$ if and only if $1 \in J_0$.

\[\iff\]
The Weak Nullstellensatz over Finite Fields

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}}_q$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$

\iff

$1 \in J + J_0 \iff \text{reducedGB}(J + J_0) = \{1\}$
Proof

\[V_{F_q}(J) = V_{F_q}(J) \cap F_q^n \]
\[= V_{F_q}(J) \cap V_{F_q}(J_0) \]
\[= V_{F_q}(J) \cap V_{F_q}(J_0) \]
\[= V_{F_q}(J + J_0) \]

\[V_{F_q}(J) = \emptyset \iff V_{F_q}(J + J_0) = \emptyset \]
\[\iff 1 \in J + J_0 \iff reducedGB(J + J_0) = \{1\} \]
Equivalence Check using Nullstellensatz

Ideal J:

$x_1 = a \lor (\neg a \land b) \implies x_1 + a + b \cdot (a + 1) + a \cdot b \cdot (a + 1) \pmod 2$

$y_1 = a \lor b \implies y_1 + a + b + a \cdot b \pmod 2$

$x_1 \neq y_1 \implies x_1 + y_1 + 1 \pmod 2$

Compute $G = GB(J)$ over \mathbb{Z}_2 w.r.t. LEX $x_1 > y_1 > a > b$:

$$a^2 \cdot b + a \cdot b + 1$$

$$y_1 + a \cdot b + a + b$$

$$x_1 + a \cdot b + a + b + 1$$

$G \neq 1$, but $V(G) = \emptyset$ over \mathbb{Z}_2! Which means that there are solutions over the closure, so the bug = a don’t care condition.
Let us take verification of GF multipliers as an example:

- **Given specification polynomial**: $f : Z = A \cdot B \pmod{P(x)}$ over \mathbb{F}_{2^k}, for given k, and given $P(x)$, s.t. $P(\alpha) = 0$
- **Given circuit implementation** C
 - Primary inputs: $A = \{a_0, \ldots, a_{k-1}\}$, $B = \{b_0, \ldots, b_{k-1}\}$
 - Primary Output $Z = \{z_0, \ldots, z_{k-1}\}$
 - $A = a_0 + a_1\alpha + a_2\alpha^2 + \cdots + a_{k-1}\alpha^{k-1}$
 - $B = b_0 + b_1\alpha + \cdots + b_{k-1}\alpha^{k-1}$, $Z = z_0 + z_1\alpha + \cdots + z_{k-1}\alpha^{k-1}$
- Does the circuit C correctly compute specification f?

Mathematically:

- Construct a miter between the spec f and implementation C
- Model the circuit (gates) as polynomials $\{f_1, \ldots, f_s\} \in \mathbb{F}_{2^k}[x_1, \ldots, x_d]$
- Apply Weak Nullstellensatz
Equivalence Checking over \mathbb{F}_{2^k}

Figure: The equivalence checking setup: miter.

Spec can be a polynomial f, or a circuit implementation C
Model the miter gate as: $t(X - Y) = 1$, where t is a free variable
Verify a polynomial spec against circuit C

$Z_1 = A \cdot B \mod P$

When $Z = Z_1$, $t(Z - Z_1) = 1$ has no solution: infeasible miter

When $Z \neq Z_1$: let $t^{-1} = (Z - Z_1)$. Then $t \cdot (t^{-1}) = 1$ always has a solution!

Apply Nullstellensatz over F_{2^k}

Figure: The equivalence checking setup: miter.
Example Implementation Circuit: Mastrovito Multiplier over \mathbb{F}_4

![Circuit Diagram]

Figure: A 2-bit Multiplier

- Write $A = a_0 + a_1 \alpha$ as a polynomial $f_A : A + a_0 + a_1 \alpha$
- Polynomials modeling the entire circuit: ideal $J = \langle f_1, \ldots, f_{10} \rangle$

\[
\begin{align*}
 f_1 & : z_0 + z_1 \alpha + Z; & f_2 & : b_0 + b_1 \alpha + B; & f_3 & : a_0 + a_1 \alpha + A; & f_4 & : s_0 + a_0 \cdot b_0; & f_5 & : s_1 + a_0 \cdot b_1; & f_6 & : s_2 + a_1 \cdot b_0; & f_7 & : s_3 + a_1 \cdot b_1; & f_8 & : r_0 + s_1 + s_2; & f_9 & : z_0 + s_0 + s_3; & f_{10} & : z_1 + r_0 + s_3
\end{align*}
\]
Continue with multiplier verification

- So far, ideal $J = \langle f_1, \ldots, f_{10} \rangle$ models the implementation
- Let polynomial $f : Z_1 - A \cdot B$ denote the spec
- Miter polynomial $f_m : t \cdot (Z - Z_1) - 1$
- Update the ideal representation of the miter: $J = J + \langle f, f_m \rangle$
- Finally: ideal $J = \langle f_1, \ldots, f_{10}, f, f_m \rangle$ represents the miter circuit
- $J \subseteq \mathbb{F}_{2k}[A, B, Z, Z_1, a_0, a_1, b_0, b_1, r_0, s_0, \ldots, s_3, t]$
- Verification problem: is the variety $V_{\mathbb{F}_4}(J) = \emptyset$?
- How will we solve this problem?
Weak Nullstellensatz over \mathbb{F}_{2^k}

Theorem (Weak Nullstellensatz over \mathbb{F}_{2^k})

Let ideal $J = \langle f_1, \ldots, f_s \rangle \subset \mathbb{F}_{2^k}[x_1, \ldots, x_n]$ be an ideal. Let $J_0 = \langle x_1^{2^k} - x_1, \ldots, x_n^{2^k} - x_n \rangle$ be the ideal of all vanishing polynomials. Then:

$$V_{\mathbb{F}_{2^k}}(J) = \emptyset \iff V_{\mathbb{F}_{2^k}}(J + J_0) = \emptyset \iff reducedGB(J + J_0) = \{1\}$$

Proof:

$$V_{\mathbb{F}_{2^k}}(J) = V_{\mathbb{F}_{2^k}}(J) \cap \mathbb{F}_{2^k}$$

$$= V_{\mathbb{F}_{2^k}}(J) \cap V_{\mathbb{F}_{2^k}}(J_0) = V_{\mathbb{F}_{2^k}}(J) \cap V_{\mathbb{F}_{2^k}}(J_0)$$

$$= V_{\mathbb{F}_{2^k}}(J + J_0)$$

Remember: $V_{\mathbb{F}_q}(J_0) = V_{\overline{\mathbb{F}_q}}(J_0)$. The variety of J_0 does not change over the field or the closure!
Apply Weak Nullstellensatz to the Miter

- Note: Word-level polynomials \(f_A : A + a_0 + a_1\alpha \in \mathbb{F}_{2^k} \)
- Gate level polynomials \(f_4 : s_0 + a_0 \cdot b_0 \in \mathbb{F}_2 \)
- Since \(\mathbb{F}_2 \subset \mathbb{F}_{2^k} \), we can treat **ALL** polynomials of the miter, collectively, over the larger field \(\mathbb{F}_{2^k} \), so
 \[J \subseteq \mathbb{F}_{2^k}[A, B, Z, Z_1, a_0, a_1, \ldots, z_0, z_1] \]
- Consider word-level vanishing polynomials: \(A^{2^2} - A \)
- What about bit-level vanishing polynomials: \(a_0^2 - a_0 \)
- So, \(J_0 = \langle W^{2^k} - W, B^2 - B \rangle \), where \(W \) are all the word-level variables, and \(B \) are all the bit-level variables
- Now compute \(G = GB(J + J_0) \). If \(G = \{1\} \), the circuit is correct. Otherwise there is definitely a BUG within the field \(\mathbb{F}_{2^k} \)
Recall the CNF-SAT problem

- Given a CNF formula \(f(x_1, \ldots, x_n) = C_1 \land C_2 \land \cdots \land C_s \)
 - Each \(C_i \) is a clause, i.e. a disjunction of literals
- Find an assignment to variables \(x_1, \ldots, x_n \), s.t. \(f = \text{true} \)
- We can formulate this problem over the (Boolean) ring \(\mathbb{Z}_2[x_1, \ldots, x_n] \)
- Model clauses as polynomials \(f_1, \ldots, f_s \in \mathbb{Z}_2[x_1, \ldots, x_n] \)
- Apply Gröbner basis concepts to reason about SAT/UNSAT (think varieties!)
Be careful about problem formulation

In the SAT world, formula SAT means:

\[C_1 = 1 \]
\[C_2 = 1 \]
\[\vdots \]
\[C_s = 1 \]

In the polynomial world, solving means:

\[f_1 = 0 \]
\[f_2 = 0 \]
\[\vdots \]
\[f_s = 0 \]
Be careful about problem formulation

In the SAT world, formula SAT means:

\[
\begin{align*}
C_1 &= 1 \\
C_2 &= 1 \\
\vdots \\
C_s &= 1
\end{align*}
\]

In the polynomial world, solving means:

\[
\begin{align*}
f_1 &= 0 \\
f_2 &= 0 \\
\vdots \\
f_s &= 0
\end{align*}
\]

\[
(C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)
\]
Be careful about problem formulation

In the SAT world, formula SAT means:

\[
\begin{align*}
C_1 &= 1 \\
C_2 &= 1 \\
&\quad \vdots \\
C_s &= 1
\end{align*}
\]

In the polynomial world, solving means:

\[
\begin{align*}
f_1 &= 0 \\
f_2 &= 0 \\
&\quad \vdots \\
f_s &= 0
\end{align*}
\]

\[
(C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)
\]

Translate: \((C_i \oplus 1 = 0)\) as \(f_i + 1 = 0\) over \(\mathbb{Z}_2\)
Example

\[f(a, b) = (a \lor \neg b) \land (\neg a \lor b) \land (a \lor b) \land (\neg a \lor \neg b) \]

- Convert each \(C_i \) from \(\mathbb{B} \) to \(\mathbb{Z}_2 \)
- Consider \(C_1 : (a \lor \neg b) \)
 - \(C_1 : (a \lor (1 \oplus b)) = a \oplus (a \oplus b) \oplus a(1 \oplus b) = 1 \oplus b \oplus ab \)
 - Here \(\oplus = XOR = + \pmod{2} \)
 - Over \(\mathbb{Z}_2 \), \(+ \pmod{2} \) is implicit, so we write: \(C_1 : 1 + b + ab \)
- Similarly: \(C_2 : 1 + a + ab; \ C_3 : a + b + ab; \ C_4 : 1 + ab \)

However: this still corresponds to \(C_i = 1 \), whereas we need \(C_i + 1 = 0 \) over \(\mathbb{Z}_2 \)
Example

In the SAT world:

\[C_1 : \ (a \lor \neg b) = 1 \]
\[C_2 : \ (\neg a \lor b) = 1 \]
\[C_3 : \ (a \lor b) = 1 \]
\[C_4 : \ (\neg a \lor \neg b) = 1 \]

In the polynomial world

\[f_1 : \ b + ab = 0 \]
\[f_2 : \ a + ab = 0 \]
\[f_3 : \ a + b + ab + 1 = 0 \]
\[f_4 : \ ab = 0 \]

- Now \(J = \langle f_1, \ldots, f_4 \rangle \) generates an ideal in \(\mathbb{Z}_2[a, b] \)
- We need to analyze \(V_{\mathbb{Z}_2}(J) \)
Apply Nullstellensatz to Boolean rings $\mathbb{Z}_2[x_1, \ldots, x_n]$

Boolean rings: Rings with indempotence $a \wedge a = a$ or $a^2 = a$

- Consider the ideal of vanishing polynomials
 - In \mathbb{Z}_p, $x^p = x \pmod{p}$, or $x^p - x = 0$
 - In \mathbb{Z}_2: $x^2 - x$ vanishes on $\{0, 1\}$: vanishing polynomial
- Let $J_0 = \langle x_1^2 - x_1, x_2^2 - x_2, \ldots, x_n^2 - x_n \rangle$ denote the ideal of all vanishing polynomials
- $V_{\mathbb{Z}_2}(J_0) = (\mathbb{Z}_2)^n$ (the n-dimensional space over \mathbb{Z}_2)
- Variety of J_0 doesn’t change over the closure: $V_{\overline{\mathbb{Z}_2}}(J) = (\mathbb{Z}_2)^n$
- These vanishing polynomial restrict the solutions to only over \mathbb{Z}_2
- So compute

 $G = GB(J + J_0) = GB(f_1, \ldots, f_s, x_1^2 - x_1, x_2^2 - x_2, \ldots, x_n^2 - x_n)$

- If $G \neq \{1\}$ then definitely there is a SAT solution within \mathbb{Z}_2
Theorem (Weak Nullstellensatz over Boolean Rings)

Let ideal \(J = \langle f_1, \ldots, f_s \rangle \subset \mathbb{Z}_2[x_1, \ldots, x_n] \) and let \(J_0 = \langle x_1^2 - x_1, \ldots, x_n^2 - x_n \rangle \). Then \(V_{\mathbb{Z}_2}(J) = \emptyset \iff \text{the reduced } GB(J + J_0) = GB(f_1, \ldots, f_s, x_1^2 - x_1, \ldots, x_n^2 - x_n) = \{1\} \).

If \(GB(J + J_0) = \{1\} \) then the problem is UNSAT.

If \(GB(J + J_0) \neq \{1\} \) then there is definitely a solution in \(\mathbb{Z}_2 \).

Notation for Sum of Ideals: If \(J_1 = \langle f_1, \ldots, f_s \rangle \) and \(J_2 = \langle g_1, \ldots, g_t \rangle \), then \(J_1 + J_2 = \langle f_1, \ldots, f_s, g_1, \ldots, g_t \rangle \).
If $GB \neq \{1\}$, is $V(J)$ finite or infinite?

Theorem

Let F be any field and \overline{F} be its closure, and $J \subseteq F[x_1, \ldots, x_n]$ be an ideal. Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner basis of J. Then:

$$V_{\overline{F}}(J) = \text{finite} \iff \forall x_i \in \{x_1, \ldots, x_n\}, \exists g_j \in G, s.t. \text{lm}(g_j) = x_i^l, \text{for some } l \in \mathbb{N}$$
Example of a finite variety

Example

$R = \mathbb{Q}[x, y]$, $f_1 = (x - 1)^2 + y^2 - 1$; $f_2 = 4(x - 1)^2 + y^2 + xy - 2$.

$G = GB(f_1, f_2)$ with lex $x > y$

$G = \{g_1 = 5y^4 - 3y^3 - 6y^2 + 2y + 2, \quad g_2 = x - 5y^3 + 3y^2 + 3y - 2\}$

Variety is finite.
Solve the system of equations:

\[
\begin{align*}
 f_1 & : x^2 - y - z - 1 = 0 \\
 f_2 & : x - y^2 - z - 1 = 0 \\
 f_3 & : x - y - z^2 - 1 = 0
\end{align*}
\]

Gröbner basis with lex term order \(x > y > z\)

\[
\begin{align*}
 g_1 & : x - y - z^2 - 1 = 0 \\
 g_2 & : y^2 - y - z^2 - z = 0 \\
 g_3 & : 2yz^2 - z^4 - z^2 = 0 \\
 g_4 & : z^6 - 4z^4 - 4z^3 - z^2 = 0
\end{align*}
\]

- Is \(V(\langle G \rangle) = \emptyset\)? No, because \(G \neq \{1\}\)
- \(G\) tells me that \(V(\langle G \rangle)\) is finite!
- \(G\) is triangular: solve \(g_4\) for \(z\), then \(g_2, g_3\) for \(y\), and then \(g_1\) for \(x\)
Gröbner basis of Zero-Dimensional Ideal

Definition (Zero-Dimensional Ideals)

An ideal J is called zero dimensional when its variety $V(J)$ is a finite set.

- $V_{\mathbb{F}_q}(J)$ is a finite set
- $V_{\overline{\mathbb{F}_q}}(J)$ need not be a finite set, as $\overline{\mathbb{F}_q}$ is an infinite set
- So, ideal J may or maynot be zero dimensional
- $V_{\mathbb{F}_q}(J) = V_{\overline{\mathbb{F}_q}}(J + J_0) = V_{\mathbb{F}_q}(J + J_0)$ is always a finite set, as solutions are restricted to \mathbb{F}_q
- Ideal $J + J_0$ is zero dimensional!

The Gröbner basis of $J + J_0$ has a very special structure!
The GB of $J + J_0$ in $\mathbb{F}_q[x_1, \ldots, x_n]$

Theorem (Gröbner bases in finite fields (application of Theorem 2.2.7 from [4] over \mathbb{F}_q))

For $G = GB(J + J_0) = \{g_1, \ldots, g_t\}$, the following statements are equivalent:

1. The variety $V_{\mathbb{F}_q}(J)$ is finite.
2. For each $i = 1, \ldots, n$, there exists some $j \in \{1, \ldots, t\}$ such that $\text{lm}(g_j) = x_i^l$ for some $l \in \mathbb{N}$.
3. The quotient ring $\frac{\mathbb{F}_q[x_1, \ldots, x_n]}{(G)}$ forms a finite dimensional vector space.
Count the number of solutions

Example

\(G = GB(J) = \{x^3 y^2 - y; \ x^4 - y^2; \ xy^3 - x^2; \ y^4 - xy\} \). Consider only the leading monomials in \(G \). \(LT(G) = \{x^3 y^2, x^4, xy^3, y^4\} \).

List all monomials \(m \) s.t. \(m \) is not divisible by any monomial in \(LT(G) \):

Standard Monomials \(SM = \{1, x, x^2, x^3, y, y^2, y^3, xy, xy^2, x^2 y, x^2 y^2, x^3 y\} \)

Cardinality \(|SM| \) = an upper bound on the number of solutions (=12 in the above example)

In general, \(|V(J)| \) is bounded by \(|SM(J)| \), but over finite fields, the following result holds, where the upper bound becomes an equality!
For a GB G, let $LM(G)$ denote the set of leading monomials of all elements of G: $LM(G) = \{lm(g_1), \ldots, lm(g_t)\}$.

Definition (Standard Monomials)

Let $X^e = x_1^{e_1} \cdots x_n^{e_n}$ denote a monomial. The set of standard monomials of G is defined as $SM(G) = \{X^e : X^e \notin \langle LM(G) \rangle\}$.

Theorem (Counting the number of solutions (Theorem 3.7 in [5]))

Let $G = GB(J + J_0)$, and $|SM(G)| = m$, then the ideal J vanishes on m distinct points in \mathbb{F}_q^n. In other words, $|V_{\mathbb{F}_q}(J)| = |SM(G)|$.

