Boolean Function Representation

- Requirements for a Boolean Function Representation?
 - Compact representation: small size
 - Efficiently manipulable: should be easy to operate upon
 - Versatile: Should be able to solve problems of different nature; e.g. logic optimization, SAT, testing, verification, etc.
 - What about Canony?

- Does a truth-table satisfy these requirements?
- Does SOP form satisfy these requirements?
- Does a POS form satisfy these requirements?
- Factored form?
- Check for containment, SAT, tautology, etc., is difficult
Binary Decision Diagrams (BDDs)

- Truth Table versus Binary Decision Diagrams

- $f = ab + bc + ac$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Salient Features of a BDD

- BDD is a Decision Tree
- Variables of the BDD are ordered: called OBDD
- Terminals have numeric values; internal nodes ≡ variables
- Edges ≡ decisions w.r.t variables
- Each internal node has EXACTLY 2 children
- Solid Edge = TRUE edge \((var = 1)\), Dashed/dotted edge: FALSE edge \((var = 0)\)
- Each node represents a function (computed at that node)
- BDD = effectively a Shannon tree
- OBDD (BDD w/ ordered variables) is a CANONY!
- OBDD = if-then-else structure, hence called ITE DAG
Representing BDD on a Computer

- Assign *levels* to the tree; level \(\equiv\) variable order
- Assign *unique* identifiers to each node
- For our majority function: \(f = ab + bc + ac\)

```
DdNode{
    int level /* index or variable order */
    int id /* unique identifier */
    int value /* for terminal nodes */
    DdNode * T /* PTR to T-child */
    DdNode * E /* PTR to E-child */
}
```
For our same majority function:
\[f = ab + bc + ac = a'bc + ab'c + abc' + abc \]

Merge Terminal Nodes

```
DdNode{
    level = 2;
    unique id = 6;
    value = -1 /* non-terminal */
    T-child PTR =
    E-child PTR =
}
```
Reduce OBDD Further...

- Remove Redundant Nodes
Reduce OBDD even Further...

- Merge Isomorphic Subgraphs

```
  a  b  b  c  c
  |  |  |  |
  0 1 0 1
```

Reduced Ordered Binary Decision Diagram

- Apply reduction operations from terminals to root
- Reduction = remove redundant nodes and merge isomorphic subgraphs
- When you reach the root, you’re done!
- ROBDD: subject to a variable order, it is a canony
- If \(f = 1 \) what does the ROBDD look like?
- Equivalent Boolean Functions have isomorphic ROBDDs, if the variable ordering is the same
- What is the effect of Variable Ordering on the size of ROBDD?
Variable Ordering and ROBDD Size

- $f_1 = (a + b)c; \ f_2 = ac + bc$
- $f_1 = f_2 = ac + bc = ab'c + abc + a'bc$
- Which var order is better? How to find a good order?
Terminology + Definitions

- An OBDD is a rooted directed graph with vertex set V. Each non-leaf vertex has as attributes a pointer \(\text{index}(v) \in \{1, 2, \ldots, n\} \) to an input variable in the set \(\{x_1, x_2, \ldots, x_n\} \), and two children \(\text{low}(v), \text{high}(v) \in V \). A leaf vertex v has as an attribute a value, \(\text{value}(v) \in \mathbb{B} \).

- An OBDD with root v denotes a function f^v such that:
 - If v is a leaf with $\text{value}(v) = 1$, $f^v = 1$.
 - If v is a leaf with $\text{value}(v) = 0$, $f^v = 0$.
 - If v is a non-leaf node with $\text{index}(v) = i$,
 \[f^v = x'_i \cdot f^{\text{low}(v)} + x_i \cdot f^{\text{high}(v)}. \]

- An OBDD is said to be reduced (ROBDD) if it contains no vertex v with $\text{low}(v) = \text{high}(v)$, nor any vertex pair \{u, v\} such that subgraphs rooted at u and v are isomorphic.
Given a Circuit - How to Build ROBDDs?

- Build truth-table → then build non-reduced OBDD → then reduce it → obtain ROBDD

- Can you build truth-table from a huge circuit?

- If you can, why not just work on it, why get into BDDs?

- Recall Truth-table == non-reduced OBDD!

- If you get a HUGE OBDD, Reduce operation becomes infeasible

- How do we “efficiently” build ROBDDs directly from a circuit (function)?
 - How do we obviate the process of first building non-reduced BDD and then applying reduction steps?
Build ROBDD for a Circuit

- \(f = ac + bc \)
- Build Trivial ROBDDs for \(a, b, c \)
- Build ROBDD for \(ac \) from ROBDDs for \(a \) and \(c \)
- Operate on the GRAPHS of \(a \) and \(c \) and get \(ac \)!
First Learn the ITE Operator

- Let $Z = ITE(f, g, h) = f \cdot g + f' \cdot h$
- Let an ROBDD w/ top-node $= v$ compute a function $= Z$
- Apply Shannon's expansion on Z w.r.t. v

\[
\begin{align*}
Z &= vZ_v + v'Z_{v'} \\
 &= v(ite(f, g, h))_v + v'(ite(f, g, h))_{v'} \\
 &= v(fg + f'h)_v + v'(fg + f'h)_{v'} \\
 &= v(f_vg_v + f'_vh_v) + v'(f'_vg'_v + f'_vh'_v) \\
 &= ite(v, (f_vg_v + f'_vh_v), (f'_vg'_v + f'_vh'_v)) \\
 &= ite(v, ite(f_v, g_v, h_v), ite(f'_v, g'_v, h'_v)) \\
 &= v \cdot itc(f_v, g_v, h_v) + v' \cdot itc(f'_v, g'_v, h'_v)
\end{align*}
\]

- Apply ITE at top node \rightarrow Apply ITE to its co-factors!
Boolean Computations and ITE

- Compute $f \cdot g$ using ITE operation
- $ITE(f, g, h) = f \cdot g + f' \cdot h$
- $ITE(f, g, 0) = f \cdot g + 0$
- Compute $f + g$: $ITE(_ , _ , _) = f + g$
- Compute $f \oplus g = ITE(_ , _ , _) = f \cdot g' + f' \cdot g$
- Compute any and all functions using ITE