Build Reduced OBDDs Directly from a Circuit

- $f = abc + bc$
- Build Trivial ROBDDs for a, b, c
- Build ROBDD for abc from ROBDDs for a, b and c
- Operate on GRAPHs of a, b and c and get ROBDD for abc!
BDDs as Multi-Rooted DAGs

- Ckt w/ 2 Outputs: \(f_1 = abc, f_2 = bc \)
The ROBDD Manager

- Objective: Create ROBDD package as a software library
- Create a “global” manager that:
 - Allows global access to any node in the ROBDD
 - Keeps statistical info of the number of BDD nodes
 - Keeps a pointers to terminal nodes 0 & 1
 - Keeps a record of the number of BDD vars (via levels)
 - Maintains the uniform variable order
- Use the same manager for all ROBDDs (Multi-rooted BDDs)
- Maintain CANONICAL form using: ITE operator, OBDD
 Reduce operations, symbol table implemented as a unique table
First Learn the ITE Operator

- Let $Z = ITE(f, g, h) = f \cdot g + f' \cdot h$
- Let an ROBDD w/ top-node = v compute a function = Z
- Apply Shannon’s expansion on Z w.r.t. v

$$Z = vZ_v + v'Z_{v'} \tag{1}$$

$$= v(ite(f, g, h)_v + v'(ite(f, g, h))_{v'} \tag{2}$$

$$= v(fg + f'h)_v + v'(fg + f'h)_{v'} \tag{3}$$

$$= v(f_v g_v + f'_v h_v) + v'(f'_v g_v + f_v h_v) \tag{4}$$

$$= ite(v, (f_v g_v + f'_v h_v), (f'_v g_v + f_v h_v)) \tag{5}$$

$$= ite(v, ite(f_v, g_v, h_v), ite(f'_v, g_v, h_v)) \tag{6}$$

$$= v \cdot ite(f_v, g_v, h_v) + v' \cdot ite(f'_v, g_v, h_v) \tag{7}$$

- Apply ITE at top node \rightarrow Apply ITE to its co-factors!
Significance of the ITE Operator

- Let \(Z = ITE(f, g, h) = f \cdot g + f' \cdot h \)
- Apply ITE at top node \(\rightarrow \) Apply ITE to its co-factors!

\[
Z = vZ_v + v'Z_{v'} \\
= v(\text{ite}(f, g, h))_v + v'(\text{ite}(f, g, h))_{v'} \\
= v \cdot \text{ite}(f_v, g_v, h_v) + v' \cdot \text{ite}(f_{v'}, g_{v'}, h_{v'})
\]

Create ROBDD for \(Z = ITE(f, g, h) \)
\(\Rightarrow \) Create ROBDD for \(Z = fg + f'g' \)
Boolean Computations and ITE

- Compute $f \cdot g$ using ITE operation
- $ITE(f, g, h) = f \cdot g + f' \cdot h$
- $ITE(f, g, 0) = f \cdot g + 0 = f \cdot g$
- Compute $f + g$: $ITE(_, _, _) = f + g$
- Compute $f \oplus g = ITE(_, _, _) = f \cdot g' + f' \cdot g$
- Compute any and all functions using ITE
Build ROBDD using ITE

- \(f = a, g = b, h = 0 \) and \(a \cdot b = ITE(f, g, 0) \)
- Var order (in the same BDD Manager) \(\equiv a=0, b=1, c=2 \)
- \(Z = v \cdot \text{ite}(f, g, h) + v' \cdot \text{ite}(f', g', h') \)
- \(v \) = variable associated w/ topmost nodes among \(f, g, h \) (\(= a \))

\[
\begin{align*}
ITE(f, g, h) &= a; \quad g = b; \quad h = 0 \quad \text{and} \quad v = a \\
\end{align*}
\]
Build ROBDD using ITE (Contd...)

- $f = a, g = b, h = 0$ and $a \cdot b = ITE(f, g, 0)$
- Var order (in the same BDD Manager) $\equiv a=0, b=1, c=2$
- $Z = v \cdot ite(f_v, g_v, h_v) + v' \cdot ite(f'_v, g'_v, h'_v)$
- v = variable associated w/ topmost nodes among f, g, h (= a)

\[
\begin{align*}
ITE(f_v, g_v, h_v) &= ITE(a_a, b_a, 0_a) = ITE(\quad, \quad,)
\end{align*}
\]
Implementing a Unique Symbol Table

- Reduce OBDD to create ROBDD:
 - Remove redundant nodes (easy)
 - Merge isomorphic subgraphs (difficult)
- How to identify which subgraph is isomorphic to which other subgraph?
- Check for Graph isomorphism is not easy (remember?)
- Solution: Obviate the need to perform isomorphism check!
- How? Using a data structure called “Symbol Table”
Implementing a Unique Symbol Table

- Pick-up any Data-structures book, and read about symbol tables.
Implementing a Unique Symbol Table

- For a BDD node, Key(node) = \{\text{low}(v), v, \text{high}(v)\}
- This Key is unique: equivalent nodes have the same Key!

Key= \{\text{low}(v), v, \text{high}(v)\} = \{Dd0, b, Dd1\}
Key(g) = \{\}

ITE(f, g, h) = b
ITE(f_v, g_v, h_v) = b
index(b) = order = 1