1) Introduction to Hardware Verification
 • Formal Hardware Verification
 • Combinational and Sequential Circuit Verification
 • Equivalence and Property Checking
 • SAT and SMT-based Verification
 • Decision Diagrams
 • Datapath Verification Challenges
 • Motivation for Formal Verification using Computational Algebra and Algebraic Geometry

2) Introduction to Commutative Algebra and Algebraic Geometry
 • Rings and Fields
 • Modulo Arithmetic
 • Finite Fields
 • Polynomials, Polynomial Rings and Polynomial Functions
 • Hardware Modeling using Polynomial Functions

3) Finite Fields and Cryptography Circuits
 • Finite Fields and Hardware Design
 • From $f : \mathbb{B}^k \to \mathbb{B}^k$ to $f : F_{2^k} \to F_{2^k}$
 • Applications in Public Key Cryptography
 • Formal Specification and Construction of Finite Field Circuits
 • The Verification Formulation
4) Ideals, Varieties, and Gröbner Bases
 - Polynomial Ideals and their Varieties
 - Gröbner Bases of Polynomial Ideals
 - Buchberger’s Algorithm
 - Ideal Membership Testing and Equivalence Checking

5) Nullstellensatz and Hardware Verification
 - The Weak and Strong Nullstellensatz
 - Radical Ideals and the I(V(\text{J}))
 - Nullstellensatz over Finite Fields
 - Application of Nullstellensatz to Equivalence Checking

6) Elimination Ideals and Design Abstraction
 - Elimination Ideals and Projection of Varieties
 - Application over Finite Fields
 - Word-Level Abstraction from Bit-Level Circuits

7) Improving Gröbner Basis based Hardware Verification
 - Efficient Term-ordering for Circuits
 - Faugère’s F₄ Algorithm
 - Applications to Circuit Verification

8) Reachability Analysis and Sequential Circuit Verification
 - Finite State Machines (FSMs)
 - State-Space Analysis and Sequential Circuit Verification
 - Reachability analysis using Algebraic Geometry
 - Property Directed Reachability and Gröbner Bases
 - Craig’s Interpolants in Algebraic Geometry

9) Testing VLSI Circuits for Manufacturing Defects
 - The Stuck-at Fault Model and ATPG
 - Fault Collapsing for ATPG
 - The D- and PODEM-algorithms for ATPG
 - Sequential Circuit Testing
 - Delay Fault ATPG

10) Conclusion of Course
 - Class Projects and Presentations