
Craig Interpolants in Finite Fields using Algebraic
Geometry: Theory and Application

Utkarsh Gupta1 Irina Ilioaea2 Priyank Kalla1 Florian Enescu2 Vikas Rao1 Arpitha Srinath1

1Electrical and Computer Engineering, University of Utah, Salt Lake City UT, USA
2Mathematics and Statistics, Georgia State University, Atlanta GA, USA

Abstract—This paper considers Craig interpolation for a
mutually inconsistent pair of polynomial constraints over finite
fields Fq, for q any prime power. Using techniques from alge-
braic geometry, we show that Nullstellensatz over finite fields
admits Craig interpolation. The constraints are represented as
polynomial ideals with inconsistent varieties, and it is shown
how various interpolants, including the smallest and the largest
one, can be computed using the Gröbner basis (GB) algorithm.
The number of all possible interpolants can also be easily
identified. As an application, we demonstrate how the theory of
interpolants in finite fields can be applied to circuit rectification
for arithmetic circuits. We perform rectification by applying
single-fix rectification where we modify the functionality of
exactly one gate output net. We also show how the correction
for that faulty output can be constructed using interpolants.

I. INTRODUCTION

Craig interpolation is a method to construct and refine
abstractions of functions. It finds application in formal ver-
ification of hardware designs and software programs, in logic
synthesis of Boolean functions, and also as a tool in proof
complexity theory. It is a logical tool to extract concise
explanations for the infeasibility of a mutually inconsistent
set of statements. Craig [1] showed that for a valid implication
A =⇒ B, where A,B are first order formulae containing no
free variables, there is a formula I such that A =⇒ I, I =⇒ B
and the non-logical symbols of I appear in both A and B. The
formula I is called the Craig interpolant, or interpolant for
short. As propositional logic also admits Craig interpolation,
the formal verification community has extensively investigated
interpolants and their computation from resolution proofs of
CNF-SAT problems. In the propositional logic domain, the
concept is stated with a slight modification.

Definition I.1. Let (A,B) be a pair of CNF formulae (sets of
clauses) such that A∧B is unsatisfiable. Then there exists a
formula I such that: (i) A =⇒ I; (ii) I ∧B is unsatisfiable;
and (iii) I refers only to the common variables of A and B,
i.e. Var(I) ⊆ Var(A)∩Var(B). The formula I is called the
interpolant of (A,B).

Given the pair (A,B) and their refutation proof, a procedure
called the interpolation system constructs the interpolant in
linear time and space in the size of the proof [2]. As the
abilities of SAT solvers for proof refutation have improved,
interpolants have been exploited as abstractions in various
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problems that can be formulated as unsatisfiable instances,
e.g. model checking [2], logic synthesis [3], etc. Their use as
abstractions have also been replicated in other (combinations
of) theories [4] [5] [6] [7], etc.

In this paper, we introduce the notion of Craig interpolants
in polynomial algebra over finite fields (Fq) of q elements,
where q = pk is a prime power. Given a mutually inconsistent
pair of sets of polynomials with coefficients from Fq that
have no common zeros, we show that Nullstellensatz over
finite fields admits interpolation. We represent the sets A,B
(from Def. I.1) as varieties of corresponding ideals, and
prove the existence of an interpolant for the pair (A,B). In
this setting, interpolants correspond to varieties – subsets
of the n-dimensional affine space Fn

q – and are represented
by polynomial ideals, more precisely, by a Gröbner basis of
corresponding ideals. We demonstrate the application of the
interpolants for circuit rectification.

Intuitively, it should be apparent that polynomial algebra
over finite fields would admit Craig interpolation (a first order
theory over Fq admits quantifier elimination [8]). However, our
literature search for interpolants and their computation with
polynomials in arbitrary finite fields did not reveal much prior
work in this area. Recent years have witnessed investigations
in formal verification, abstraction and synthesis of datapath
circuits with k-bit operands, where the problems have been
modeled over finite fields (F2k ) [9] [10] or over finite integer
rings (Z2k ) [11]. Interpolants can be exploited as abstractions
of functions ( f : F2k → F2k ) in this domain, and can make
these approaches practical. Motivated by the above needs, this
paper presents the theory of Craig interpolation in finite fields,
and a preliminary application on circuit rectification.

Contributions: Using the extensive machinery of algebraic
geometry in finite fields, this paper makes the following
contributions: 1) Formally define the notion of interpolants
in polynomial algebra over finite fields Fq, and prove their
existence in this domain. 2) Derive the relationship of in-
terpolants with elimination ideals, and show how to com-
pute them using Gröbner bases. 3) Compute the smallest
interpolant, i.e. the one contained in every other interpolant.
Analogously, compute the largest interpolant, i.e. the one
containing all other interpolants. 4) Count the total number
of all possible interpolants. 5) Application of interpolants in
identifying a correction function in the case of an incorrect
circuit implementation after the circuit has been deemed single
fix rectifiable using Thm. V.1.

Paper Organization: The following section briefly reviews
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prior work in Craig interpolation in various theories, and
contrasts it against the concepts presented in this paper. It also
provides a brief background on the previous work in circuit
rectification. Section III describes the preliminary concepts of
algebraic geometry and Gröbner bases in finite fields. Section
IV describes the theory of interpolation in finite fields and
shows how they can be computed using the Gröbner basis
algorithm. Section V describes the problem of circuit rectifi-
cation and how interpolants can be used to find a correction.
Some preliminary experiments to verify that a faulty circuit
is single fix rectifiable have also been presented. Section VI
concludes the paper.

II. REVIEW OF PREVIOUS WORK

In the past decade, there has been an explosion in
the study, classification and application of interpolants. In
abstraction-based model checking, interpolants are used as
over-approximate image operators [2]. In Boolean function
decomposition, given a function F(A,B,C) with support vari-
ables partitioned into disjoint subsets A,B,C, it is required
to decompose F = G(A,C)�H(B,C), where � denotes the
Boolean ∨,∧,⊕ operations. The existence of such a decom-
position with the given variable partition is formulated as a
unsatisfiability checking problem. Craig interpolants can then
be used to compute G,H [3] [12]. In proof complexity, inter-
polants have been used as a tool to derive lower bounds; e.g. by
reasoning that if A =⇒ B does not have a simple interpolant,
then it cannot have a simple proof [13]. The authors in [14]
present an interpolation theorem for Nullstellensatz refutations
and the polynomial calculus [15] which can then be used for
proving lower bounds.

The use of interpolants as abstractions has also been repli-
cated in other combinations of theories. For example, the
theory of linear inequality [4], data-type theories [5], linear
arithmetic and difference logic [6], bit-vector SMT theories
[7], etc., are just a few of the many instances of the usage
of interpolation in various domains outside of purely propo-
sitional logic. The aforementioned works derive interpolants
from resolution proofs obtained from SAT/SMT-solvers [6], or
generate them by solving constraints in the theories of linear
arithmetic with uninterpreted functions ([16]), or exploit their
connection to quantifier elimination ([5]), etc. As an alterna-
tive to interpolation, [17] suggests the use of local proofs
and symbol eliminating inferences for invariant generation.
However, the problem has been insufficiently investigated over
polynomial ideals in finite fields from an algebraic geometry
perspective.

The works that come closest to ours are by Gao et al. [8]
and [18]. While they do not address the interpolation problem
per se, they do describe important results of Nullstellensatz,
projections of varieties and quantifier elimination over finite
fields that we extensively utilize in this paper.

The work of [19] classifies (orders) the interpolants accord-
ing to their logical strength for model checking. They present
a labeled interpolation system built on the resolution proof
where each vertex of the proof is annotated with partially
ordered labels. Interpolants generated from different sets of
labels have the same order of strength as the order of the labels.

This way a (sub-)lattice of interpolants is generated with
the smallest interpolant being the same as obtained from the
McMillan’s system (LM) [2] and the largest being the comple-
ment of inverse of LM . The labeled interpolation system of [19]
is generalized to support propositional hyper-resolution proofs
[20]. More recently, [21] presents the notion of interpolation
abstraction, and describes a semantic framework for exploring
interpolant lattices. In contrast to these works that qualitatively
order the interpolants w.r.t. a given application (e.g. model
checking), we describe a method to explore interpolants based
on the cardinality of the zero-sets of polynomial ideals, which
in turn corresponds to the size of the abstraction.

Automated diagnosis and rectification of digital circuits
has been addressed in [22], [23]. The paper [24] presents
algorithms for synthesizing Engineering Change Order (ECO)
patches. The use of interpolation for ECO has been presented
in [25], [26], [27]. The single-fix rectification function ap-
proach in [26], [27] has been extended in [25] to generate
multiple partial-fix functions while guaranteeing that the num-
ber of different minterms becomes smaller in each step. The
application of interpolants in finite fields, presented in Section
V, is motivated by the formulation of circuit rectification
problem and the use of interpolation in [25].

III. NOTATION AND PRELIMINARY CONCEPTS

Let Fq denote the finite field of q elements where q= pk is a
prime power, Fq be its algebraic closure, and R=Fq[x1, . . . ,xn]
the polynomial ring in n variables x1, . . . ,xn, with coefficients
from Fq. A monomial is a power product of the form X =
xe1

1 · x
e2
2 · · ·xen

n , where ei ∈ Z≥0,1≤ i≤ n. A polynomial f ∈ R
is written as a finite sum of terms f = c1X1+c2X2+ · · ·+ctXt ,
where c1, . . . ,ct are coefficients and X1, . . . ,Xt are monomials.
Impose a monomial order > (a term order) on the ring –
i.e. a total order and a well-order on all the monomials of R
s.t. multiplication with another monomial preserves the order.
Then the monomials of all polynomials f = c1X1 + c2X2 +
· · ·+ctXt are ordered w.r.t. to >, such that X1 > X2 > · · ·> Xt .
Subject to >, lt( f ) = c1X1, lm( f ) = X1, lc( f ) = c1, are the
leading term, leading monomial and leading coefficient of f ,
respectively. In this work, we consider lexicographic (lex) term
orders (see Definition 1.4.3 in [28]).

Ideals, Varieties and Gröbner Bases: Given a set of
polynomials F = { f1, . . . , fs} in R, the ideal J ⊆ R generated
by them is: J = 〈 f1, . . . , fs〉 = {∑s

i=1 hi · fi : hi ∈ R}. The
polynomials f1, . . . , fs form the basis or the generators of J.

Let aaa = (a1, . . . ,an) ∈ Fn
q be a point in the affine space, and

f a polynomial in R. If f (aaa) = 0, we say that f vanishes on
aaa. We have to analyze the set of all common zeros of the
polynomials of F that lie within the field Fq. This zero set
is called the variety. It depends not just on the given set of
polynomials but rather on the ideal generated by them. We
denote it by VFq(J) =VFq( f1, . . . , fs), where:

VFq(J) =VFq( f1, . . . , fs) = {aaa ∈ Fn
q : ∀ f ∈ J, f (aaa) = 0}.

Varieties can be different when restricted to the given
field Fq or considered over its algebraic closure Fq. We will
generally drop the subscript when considering varieties over
Fq and denote V (J) to imply VFq(J). The subscripts will be
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used, however, to avoid any ambiguities, e.g. when comparing
VFq(J) against the one over the closure VFq

(J).
Given two ideals J1 = 〈 f1, . . . , fs〉,J2 = 〈h1, . . . ,hr〉, the sum

J1 + J2 = 〈 f1, . . . , fs,h1 . . . ,hr〉, and their product J1 · J2 = 〈 fi ·
h j : 1≤ i≤ s,1≤ j≤ r〉. Ideals and varieties are dual concepts:
V (J1 + J2) = V (J1)∩V (J2), and V (J1 · J2) = V (J1)∪V (J2).
Moreover, if J1 ⊆ J2 then V (J1)⊇V (J2).

Algorithm 1 Buchberger’s Algorithm

1: procedure compute gb(F = { f1, . . . , fs})
2: G := F ;
3: repeat
4: G′ := G
5: for each pair { fi, f j}, i 6= j in G′ do
6: Spoly( fi, f j)

G′−→+ h
7: if h 6= 0 then
8: G := G∪{h}
9: until G = G′

10: return G

Gröbner Basis: An ideal may have many different sets of
generators: J = 〈 f1, . . . , fs〉
= · · ·= 〈g1, . . . ,gt〉. Given a non-zero ideal J, a Gröbner basis
(GB) for J is a finite set of polynomials G = {g1, . . . ,gt}
satisfying 〈{lm( f ) | f ∈ J}〉 = 〈lm(g1), . . . , lm(gt)〉. Then
J = 〈G〉 holds and so G = GB(J) forms a basis for J. A
GB G possesses important properties that allow to solve
many polynomial computation and decision problems. The
famous Buchberger’s algorithm ([28]) takes as input the set
of polynomials F = { f1, . . . , fs} and computes the GB G =
{g1, . . . ,gt}. The pseudo-code is shown in Algorithm 1. The
polynomial Spoly( fi, f j) in the pseudo-code is computed as

L
lt( fi)
· fi− L

lt( f j)
· f j, where L = LCM(lt( fi), lt( f j)). The symbol

f G−→+ denotes reduction (multivariate division) of f by the
polynomials in the set G. A GB can be reduced to eliminate
redundant polynomials from the basis. A reduced GB is a
canonical representation of the ideal. In this work, the set G
will denote a reduced GB, and any reference to computation
of an ideal can be construed as computing its GB.

Varieties over finite fields and the structure of Gröbner
bases: When the variety of an ideal is finite, then the ideal
is said to be zero-dimensional. As VFq(J) is a finite set, J is
zero-dimensional. A GB for a zero dimensional ideal exhibits
a special structure that we exploit in this work.

For all elements α ∈ Fq,α
q = α. Therefore, the polynomial

xq− x vanishes everywhere in Fq, and is called the vanish-
ing polynomial of the field, sometimes also referred to as
the field polynomial. Denote by J0 = 〈xq

1 − x1, . . . ,x
q
n − xn〉

the ideal of all vanishing polynomials in the ring R. Then
VFq(J0) =VFq

(J0) =Fn
q. Therefore, given any ideal J, VFq(J) =

VFq
(J)∩Fn

q =VFq
(J)∩VFq

(J0) =VFq
(J+ J0) =VFq(J+ J0).

Theorem III.1 (The Weak Nullstellensatz over finite fields
(from Theorem 3.3 in [18])). For a finite field Fq and the
ring R = Fq[x1, . . . ,xn], let J = 〈 f1, . . . , fs〉 ⊆ R, and let J0 =
〈xq

1 − x1, . . . ,x
q
n − xn〉 be the ideal of vanishing polynomials.

Then VFq(J) = /0 ⇐⇒ 1 ∈ J + J0 ⇐⇒ G = reducedGB(J +
J0) = {1}.

To find whether a set of polynomials f1, . . . , fs have no
common zeros in Fq, we can compute the reduced GB G of
{ f1, . . . , fs,x

q
1−x1, . . . ,x

q
n−xn} and see if G= {1}. If G 6= {1},

then f1, . . . , fs do have common zeros in Fq, and G consists
of the finite set of polynomials {g1, . . . ,gt} with the following
properties.

Theorem III.2 (Gröbner bases in finite fields (application of
Theorem 2.2.7 from [28] over Fq)). For G = GB(J + J0) =
{g1, . . . ,gt}, the following statements are equivalent:

1) The variety VFq(J) is finite.
2) For each i = 1, . . . ,n, there exists some j ∈ {1, . . . , t} such

that lm(g j) = xl
i for some l ∈ N.

3) The quotient ring Fq[x1...,xn]
〈G〉 forms a finite dimensional

vector space.

For a GB G, let LM(G) denote the set of leading monomials
of all elements of G: LM(G) = {lm(g1), . . . , lm(gt)}.

Definition III.1 (Standard Monomials). Let XXXeee = xe1
1 · · ·xen

n
denote a monomial. The set of standard monomials of G is
defined as SM(G) = {XXXeee : XXXeee /∈ 〈LM(G)〉}.

Theorem III.3 (Counting the number of solutions (Theorem
3.7 in [18])). Let G = GB(J+J0), and |SM(G)|= m, then the
ideal J vanishes on m distinct points in Fn

q. In other words,
|V (J)|= |SM(G)|.

Definition III.2. Given an ideal J ⊂ R and V (J) ⊆ Fn
q, the

ideal of polynomials that vanish on V (J) is I(V (J)) = { f ∈
R : ∀aaa ∈V (J), f (aaa) = 0}.

If I1 ⊂ I2 are ideals then V (I1) ⊃ V (I2), and similarly if
V1 ⊂V2 are varieties, then I(V1)⊃ I(V2).

Definition III.3. For any ideal J ⊂ R, the radical of J is
defined as

√
J = { f ∈ R : ∃m ∈ N s.t. f m ∈ J}.

When J =
√

J, J is called a radical ideal. Over algebraically
closed fields, the Strong Nullstellensatz establishes the corre-
spondence between radical ideals and varieties. Over finite
fields, it has a special form.

Lemma III.1. (From [8]) For an arbitrary ideal J ⊂
Fq[x1, . . . ,xn], and J0 = 〈xq

1− x1, . . . ,x
q
n

−xn〉, the ideal J+ J0 is radical; i.e.
√

J+ J0 = J+ J0.

Theorem III.4 (The Strong Nullstellensatz over
finite fields (Theorem 3.2 in [8])). For any ideal
J ⊂ Fq[x1, . . . ,xn], I(VFq(J)) = J+ J0.

Definition III.4. Given an ideal J = 〈 f1, . . . , fs〉 ⊂ R and its
variety V (J) ⊂ Fn

q, the l-th projection of V (J) denoted as
Prl(V (J)) is the mapping

Prl(V (J)) : Fn
q→ Fn−l

q , Prl(a1, . . . ,an) = (al+1, . . . ,an)

for every aaa = (a1, . . . ,an) ∈V (J).

Definition III.5. Given an ideal J ⊂ Fq[x1, . . . ,xn], the l-
th elimination ideal Jl is an ideal in R defined as Jl =
J∩Fq[xl+1, . . . ,xn].
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The next theorem shows how we can obtain the generators
of the l-th elimination ideal using Gröbner bases.

Theorem III.5 (Elimination Theorem [29]). Given an ideal
J ⊂ R and its GB G w.r.t. the lexicographical (lex) order on
the variables where x1 > x2 > · · ·> xn, then for every 0≤ l ≤ n
we denote by Gl the GB of l-th elimination ideal of J and
compute it as:

Gl = G∩Fq[xl+1, . . . ,xn]

In a general setting, the projection of a variety is a subset
of the variety of an elimination ideal: Prl(V (J)) ⊆ V (Jl).
However, operating over finite fields, when the ideals contain
the vanishing polynomials, then the above set inclusion turns
into an equality.

Lemma III.2 (Lemma 3.4 in [8]). Given an ideal J ⊂ R
that contains the vanishing polynomials of the field, then
Prl(V (J)) = V (Jl), i.e. the l-th projection of the variety of
ideal J is equal to the variety of its l-th elimination ideal.

We will utilize all of the above concepts to derive the results
in this paper.

IV. THEORY

We describe the setup for Craig interpolation in the ring R=
Fq[x1, . . . ,xn]. Partition the variables {x1, . . . ,xn} into disjoint
subsets A,B,C. We are given two ideals JA ⊂ Fq[A,C], JB ⊂
Fq[B,C] such that the C-variables are common to the gen-
erators of both JA,JB. From here on, we will assume that
all ideals include the corresponding vanishing polynomials.
For example, generators of JA include AAAqqq−−−AAA,,,CCCqqq−−−CCC, where
AAAqqq −−− AAA = {xq

i − xi : xi ∈ A}, and so on. Then these ideals
become radicals and we can apply Lemmas III.1 and III.2.
We use VA,C(JA) to denote the variety of JA over the Fq-
space spanned by A and C variables, i.e. VA,C(JA)⊂ FA

q ×FC
q .

Similarly, VB,C(JB)⊂ FB
q ×FC

q .
Now let J = JA + JB ⊆ Fq[A,B,C], and suppose that it is

found by application of the Weak Nullstellensatz (Thm. III.1)
that VA,B,C(J) = /0. When we compare the varieties of JA and
JB, then we can consider the varieties in FA

q × FB
q × FC

q , as
VA,B,C(JA) = VA,C(JA)×FB

q ⊂ FA
q ×FB

q ×FC
q . With this setup,

we define the interpolants as follows.

Definition IV.1 (Interpolants in finite fields). Given two ideals
JA ⊂ Fq[A,C] and JB ⊂ Fq[B,C] where A,B,C denote the three
disjoint sets of variables such that VA,B,C(JA)∩VA,B,C(JB) = /0.
Then there exists an ideal JI satisfying the following proper-
ties:

1) VA,B,C(JI)⊇VA,B,C(JA)
2) VA,B,C(JI)∩VA,B,C(JB) = /0

3) The generators of JI contain only the C-variables; or JI ⊆
Fq[C].

We call VA,B,C(JI) the interpolant in finite fields of the pair
(VA,B,C(JA),VA,B,C(JB)), and the corresponding ideal JI the
ideal-interpolant.

As the generators of JI contain only the C-variables, the
interpolant VA,B,C(JI) is of the form VA,B,C(JI) = FA

q ×FB
q ×

VC(JI). Therefore, the subscripts A,B for the interpolant
VA,B,C(JI) may be dropped for the ease of readability.

Example IV.1. Consider the ring R= F2[a,b,c,d,e], partition
the variables as A = {a},B = {e},C = {b,c,d}. Let ideals

JA = 〈ab,bd,bc+ c,cd,bd +b+d +1〉+ J0,A,C

JB = 〈b,d,ec+ e+ c+1,ec〉+ J0,B,C

where J0,A,C and J0,B,C are the corresponding ideals of
vanishing polynomials. Then, we have

VA,B,C(JA) = FB
q ×VA,C(JA) = (abcde) :

{01000,00010,01100,10010,
01001,00011,01101,10011}

VA,B,C(JB) = FA
q ×VB,C(JB) = (abcde) :

{00001,00100,10001,10100}

The ideals JA,JB have no common zeros as
VA,B,C(JA) ∩ VA,B,C(JB) = /0. The pair (JA,JB) admits a
total of 8 interpolants:

1) V (JS) = (bcd) : {001,100,110}
JS = 〈cd,b+d +1〉

2) VC(J1) = (bcd) : {001,100,110,101}
J1 = 〈cd,bd +b+d +1,bc+ cd + c〉

3) VC(J2) = (bcd) : {001,100,110,011}
J2 = 〈b+d +1〉

4) VC(J3) = (bcd) : {001,100,110,111}
J3 = 〈b+ cd +d +1〉

5) VC(J4) = (bcd) : {001,100,110,011,111}
J4 = 〈bd +b+d +1,bc+b+ cd + c+d +1〉

6) VC(J5) = (bcd) : {001,100,110,101,111}
J5 = 〈bc+ c,bd +b+d +1〉

7) VC(J6) = (bcd) : {001,100,110,101,011}
J6 = 〈bd +b+d +1,bc+ cd + c〉

8) VC(JL) = (bcd) : {001,011,100,101,110,111}
JL = 〈bd +b+d +1〉.

Fig. 1: Interpolant lattice

It is easy to check that all V (JI) satisfy the 3 conditions
of Def. IV.1. Note also that V (JS) is the smallest interpolant,
contained in every other interpolant. Likewise, V (JL) contains
all other interpolants and it is the largest. The other contain-
ment relationships are shown in the corresponding interpolant
lattice in Fig. 1; i.e. VC(J1)⊂VC(J5),VC(J1)⊂VC(J6), and so
on.
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Theorem IV.1. An ideal-interpolant JI , and correspondingly
the interpolant VA,B,C(JI), as given in Def. IV.1, always exists.

Proof. Consider the elimination ideal JI = JA∩Fq[C]. We show
JI satisfies the three conditions for the interpolant.
Condition 1: VA,B,C(JI)⊇VA,B,C(JA). This condition is trivially
satisfied due to construction of elimination ideals. As JI ⊆ JA,
VA,B,C(JI)⊇VA,B,C(JA).
Condition 2: VA,B,C(JI)∩VA,B,C(JB) = /0. This condition can
be equivalently stated as VB,C(JI)∩VB,C(JB) = /0 as neither
JI nor JB contains any variables from the set A. We prove
this condition by contradiction. Let’s assume that there exists
a common point (b,c) in VB,C(JI) and VB,C(JB). We know
that the projection of the variety PrA(VA,C(JA)) is equal to the
variety of the elimination ideal VC(JI), where JI = JA∩Fq[C],
due to Lemma III.2. Therefore, the point (c) in the variety of
JI can be extended to a point (a,c) in the variety of JA. This
implies that the ideals JA and JB vanish at (a,b,c). This is
a contradiction to our initial assumption that the intersection
of the varieties of JA and JB is empty. Thus JI ,JB have no
common zeros.
Condition 3: The generators of JI contain only the C-variables.
This condition is trivially satisfied as JI is the elimination ideal
obtained by eliminating A-variables in JA.

The above theorem not only proves the existence of an
interpolant, but also gives a procedure to construct its ideal:
JI = JA ∩Fq[C]. In other words, compute a reduced Gröbner
basis G of JA w.r.t. the elimination order A > B >C and take
GI = G∩Fq[C]. Then GI gives the generators for the ideal-
interpolant JI .

Example IV.2. The elimination ideal JI computed for
JA from Example IV.1 is JI = JS = 〈cd,b + d + 1〉
with variety VC(JI) = (bcd) : {001,100,110}. This vari-
ety over the variable set A and C is VA,C(JI) = (abcd) :
{0001,0100,0110,1001,1100,1110}, and it contains VA,C(JA).
Moreover, VA,B,C(JI) also has an empty intersection with
VA,B,C(JB).

Theorem IV.2. The interpolant VA,B,C(JS) corresponding to
the ideal JS = JA∩Fq[C] is the smallest interpolant.

Proof. Let JI ⊆ Fq[C] be any another ideal-interpolant 6= JS.
We show that VA,B,C(JS) ⊆ VA,B,C(JI). For VA,B,C(JI) to be an
interpolant it must satisfy

VA,B,C(JA)⊆VA,B,C(JI)

which is equivalent to

I(VA,B,C(JA))⊇ I(VA,B,C(JI))

=⇒ JA ⊇ JI

due to Theorem 3.4. As the generators of JI only contain
polynomials in C-variables, this relation also holds for the
following

JA∩Fq[C]⊇ JI

=⇒ JS ⊇ JI

=⇒ VA,B,C(JS)⊆VA,B,C(JI).

Now we discuss how the largest interpolant can be com-
puted. For this, we will make use of quotients of ideals.

Definition IV.2. (Quotient of Ideals) If J1 and J2 are ideals
in a ring R, then J1 : J2 is the set { f ∈ R | f ·g ∈ J1,∀g ∈ J2}
and is called the ideal quotient of J1 by J2.

We can use ideal quotients to compute the complement
of a variety. Given an ideal J′ ⊂ R containing the vanishing
polynomials, suppose we need to find an ideal J such that
V (J) = Fn

q−V (J′) = V (J0)−V (J′), where “−” corresponds
to the set difference operation. Then J = J0 : J′ (see Theorem
III.2 and Corollary III.1 in [10] for a proof outline). Once
again, the Gröbner basis algorithm can be used to compute
J0 : J′ [29].

Theorem IV.3. Consider the elimination ideal J′L = JB∩Fq[C].
The complement of the variety VA,B,C(J′L), computed as FA

q ×
FB

q ×FC
q −VA,B,C(J′L), is the largest interpolant.

Proof. The proof for this theorem is very similar to the proof
of Theorem IV.2.

Let JL be the radical ideal corresponding to the largest
interpolant VC(JL) =FC

q −VC(J′L). This ideal-interpolant JL can
be computed as JL =(J0,C : J′L), where J0,C is ideal of vanishing
polynomials in C-variables.

Example IV.3. The ideal-interpolant JL = 〈bd+b+d+1〉 in
Example IV.1 is computed as:
• First compute the ideal J′L = JB∩Fq[C] which results in

J′L = 〈b,d〉.
• Then compute JL as JL = J0,C : J′L which results in JL =

〈bd +b+d +1〉
The variety VC(JL) = (bcd) : {001,011,100,101,110,111} and
it is the largest interpolant for the given pair (JA,JB).

Lemma IV.1. The total number of interpolants for the pair
(JA,JB) is 2|SM(JD)|, where JD = (JL : JS).

Proof. As VC(JD) = VC(JL : JS) = VC(JL) − VC(JS) and
|SM(JD)| = |VC(JD)|, the total number of interpolants is the
size of the power set of VC(JD).

Example IV.4. From Example IV.1 JL = 〈bd + b + d + 1〉
and JS = 〈cd,b + d + 1〉. Computing JD = JL : JS gives
JD = 〈d + 1,bc + b + c + 1,c2 + c,b2 + b〉, where the vari-
ety VC(JD) = VC(JL)−VC(JS) = (bcd) : {011,101,111}. The
standard monomials for JD are SM(JD) = {1,b,c}. Therefore,
the total number of interpolants for the given pair (JA,JB) is
2|{1,b,c}| = 23 = 8.

The structure of the interpolant lattice: Note that our
results do provide some insights into the structure of the
interpolant lattice. Let l = |SM(JD)|. Then, the number of
levels in interpolant lattice are l + 1, and the number of
elements (interpolants) at each level i is

(l
i

)
, 0≤ i≤ l (Fig. 1).
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V. AN APPLICATION: CIRCUIT RECTIFICATION

In this section, we show an application of interpolants
in finite fields. Circuit rectification is performed to find a
correction in a circuit after verification against a specification
has failed. The process of single fix rectification involves
identifying a potential site where the fault can be corrected
and then synthesizing a correction function that can be used
instead of the currently implemented function/logic. We do not
make assumption about the type of bug(s)/fault(s) but try to
fix the incorrect implementation at exactly one gate output.

Using the weak Nullstellensatz (Theorem III.1), we formu-
late the test for rectifiability at a gate output xi in the circuit,
and show that a correction function (in primary inputs) for
that output can be obtained using interpolants.

We will first formulate the problem statement more formally
and then present the main theorem. Later in this section we
present experimental results for our approach.

Let q = 2k, and let ring R = F2k [x1, . . . ,xn], where X =
{x1, . . . ,xn}. Let fspec ∈ R be a specification polynomial, and
let C be a circuit that implements fspec. Let XPI ⊂ X be the
set of primary input variables. The gates of C can be modeled
as polynomials in F2:

z = ¬a → z+a+1 (mod 2)
z = a∧b → z+a ·b (mod 2)
z = a∨b → z+a+b+a ·b (mod 2)
z = a⊕b → z+a+b (mod 2)

(1)

Let the implementation and specification models be mappings
of the type F2k → F2k : Zm+F (A) and F2k → F2k : Zs+F (A),
respectively, implying that they both operate k-bit input and
output operands. The bit level input variables a0, . . . ,ak−1
and word-level input variable A can be related using the
polynomial A = ∑

k−1
i=0 aiα

i, where α is a primitive element of
F2k . Similarly the output bit level and word level variables
can be related. We write polynomials for the gates of C that
describe an ideal I = 〈 f1, . . . , fs〉.

We can perform an equivalence check between fspec and
the circuit C by formulating the problem using the weak
Nullstellensatz over F2k . Consider the polynomial,

fm : t(Zm−Zs)−1 (2)

where t is a free variable. Note that when Zs = Zm,Zs−Zm =
0, t · 0 = 1 has no solution; this implies that C is a correct
implementation of fspec. And when Zs 6= Zm,Zs−Zm 6= 0. So
let t−1 = Zs−Zm, then t · t−1 = 1 always has a solution, which
actually corresponds to the bug.

For performing equivalence check between the fspec and the
circuit C, we construct an ideal J = 〈 f1, . . . , fs, fm, fspec〉 and
check if GB(J+ J0) = 1? J0 is the vanishing ideal containing
the polynomials x2

i −xi, for bit level variables, and polynomials
A2k −A for word level variables. If GB(J+J0) = 1, it implies
that for no input value the circuit and specification result in
different output and they are equivalent (not equivalent when
GB(J+ J0) 6= 1).

We are now ready to formulate the problem statement
pertaining to circuit rectification. Let xi denote the gate output
in the circuit which is given to us as a possible location of
the fault. The equivalent polynomial for the Boolean function

at output xi is fi : xi +P. The following theorem provides a
procedure to check if the circuit can indeed be rectified at this
location given the specification polynomial fspec.

Theorem V.1 (Checking if C can be rectified at a location xi).
Consider the two ideals JL and JH constructed as:
• JL = 〈 fspec, f1, . . . , fi : xi, . . . , fs, fm〉 where fi : xi + P is

replaced with fi : xi.
• JH = 〈 fspec, f1, . . . , fi : xi + 1, . . . , fs, fm〉 where fi : xi +P

is replaced with fi : xi +1.
Compute EL = JL∩F2k [XPI ] and EH = JH ∩F2k [XPI ] where

EL and EH are elimination ideals containing only XPI variables.
Then the circuit can be rectified at fi w.r.t. the specification if
and only if 1 ∈ EL +EH + J0.

Corollary V.1. Let JA = EL + J0,JB = EH + J0 and 1 ∈ EL +
EH + J0, then compute an ideal-interpolant JI for the pair
(JA,JB), where XPI is the set of common variables. Then
there exists a polynomial U(XPI) s.t. the variety VF2k (JI) =
VF2k (U(XPI)), and fi : xi +U(XPI) + 1 can be used as the
rectification.

The proofs of the Theorem V.1 and Corollary V.1 are based
on the approach presented in [25] and are omitted here.

Example V.1. Let us consider a rectification problem over
R = F2[x1, . . . ,xn]. Let fspec : zs + ac+ a+ b+ bc+ c in R be
a given polynomial specification. Fig. 2 shows a circuit that
is supposed to implement fspec However, the gate f4 is faulty
and should have been a AND gate.

Fig. 2: An incorrect Implementation of the Spec.: zs + ac+
a+b+bc+ c

The ideal Ickt containing the polynomials for the gates of
the circuit is,

Ickt = 〈 f1 : z+ z1z2, f2 : z2 +d0 + e2,

f3 : z1 + e0d0 + e0 +d0, f4 : d0 + e1c+ e1 + c,
f5 : e2 + c+1, f6 : e1 +bc+b+ c,
f7 : e0 +a+b〉

We are given that f4 with output d0 is a potential location
where the circuit can be rectified. First we must perform the
check that a correction at f4 can make the circuit a correct
implementation of fspec. For that, we use Theorem V.1, i.e. to
see if 1∈EL+EH +J0. Note that if we are given multiple such
locations, we must apply Theorem V.1 to all such locations.

To perform the check, we construct two ideals JL =
〈 f1, f2, f3, f ′4 : d0, f5, f6, f7, fspec, fm〉 and JH = 〈 f1, f2, f3, f ′′4 :
d0 + 1, f5, f6, f7, fspec, fm〉, where the polynomial fm : t(Zm−
Zs)+1 (Zm = z from circuit and ZS = zs from the specification;
t is a free variable). We compute the elimination ideals
EL = JL ∩ Fq[XPI ] and EH = JH ∩ Fq[XPI ], where XPI is the
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set of primary input variables ({a,b,c}). The ideals are as
follows,

EL = 〈c+1,b2 +b,a2 +a〉
EH = 〈c,b2 +b,a+b+1〉

We check if the GB(EL+EH) is 1 or not, which in this example
is 1 as we know we can rectify the circuit at f4.

After determining that the circuit can indeed be rectified
at the location f4, we need to find a correct Boolean gate
(polynomial) for the output d0. The variety V (EL) = (abc) :
{001,011,101,111} and V (EH) = (abc) : {100,010}. The
points in the difference of variety of V (EH) and V (EL) are
(abc) : {000,110}. A possible ideal-interpolant for EL(= JA)
and EH(= JB) must have all the points in the variety V (EL)
and must not have any point from the variety V (EH).

The ideal JD computed for EL and EH has 2 standard
monomials. As a result, we can have four possible rectifica-
tions (or 4 ideal-interpolants) at the location f4 corresponding
to the varieties: V (EL), V (EL)∪ {000}, V (EL)∪ {110} and
V (EL)∪{000,110}.

The respective ideal interpolants are as follows,

JS = JA = 〈c+1,b2 +b,a2 +a〉 (smallest interpolant)
V (JS) = {001,011,101,111}

J1 = 〈bc+b,ac+a〉
V (J1) = {001,011,101,111,000}

J2 = 〈bc+b+ c+1,ac+a+ c+1〉
V (J2) = {001,011,101,111,110}

JL = 〈ac+a+bc+b〉 (largest interpolant)
V (JL) = {001,011,101,111,000,110}

For an ideal interpolant JI , we can obtain a polynomial f such
that V (JI) =V ( f ), and use that polynomial as a solution. For
example, the variety of the polynomial c+1= 0 is the same as
V (EL). Therefore, we can rectify the circuit by replacing the
incorrect gate polynomial at the location f4 by the polynomial
function f corr

4 : d0+(c+1)+1, which constrains d0 to be 1 at
the points in V (c+1). So a Boolean function that realizes the
polynomial f corr

4 : d0 + c is a possible solution for rectifying
the circuit.

As EL is the smallest interpolant for the pair EL and EH , it
is always an ideal-interpolant itself.

A. Experimental Results

We have performed some preliminary experiments on finite
field arithmetic circuits (used in cryptography) where the
implementation is different from the specification due to
exactly one gate. We implement the procedure described in the
previous section (Thm. V.1) using the SINGULAR symbolic
algebra computation system [ver. 4-1-0][30]. The experiments
were conducted on a desktop computer with a 3.5GHz Intel
CoreTM i7-4770K Quad-core CPU, 16 GB RAM, running 64-
bit Linux OS.

Modular multiplication is an important computation used
in cryptography. A Mastrovito multiplier architecture can be
employed for performing this computation over the finite field
of 2k elements, i.e. F2k . Mastrovito multipliers compute Z =

A×B (mod P(x)) where P(x) is a given primitive polynomial
for the datapath size k. The product A×B is computed using
an array multiplier architecture, and then the result is reduced
modulo P(x).

The word-level output Z can be written as a polynomial
in bit-level output variables as Z = z0 + αz1 + α2z2 + · · ·+
αk−1zk−1, where α is the root of the primitive polynomial
P(x) and k is the datapath size. The value k also characterizes
the field size as F2k . Similarly, the word-level input variables
can also be written as polynomials in respective bit-level vari-
ables. Another architecture for modular multiplication which
is preferred for exponentiation operations (often required in
cryptosystems). is Montgomery multiplier [31] [32] [33].
Montgomery multipliers are considered more efficient than
Mastrovito multipliers as they do not require explicit reduction
modulo P after each step.

Table I compares the execution time for SAT based approach
[25] and our approach (Theorem V.1) for checking whether
a Mastrovito multiplier can be rectified at a certain location
in the circuit against a Montgomery multiplier specification.
We have implemented the SAT procedure in abc tool [34].
We execute the command inter on the ON set and OFF set
as described in [25]. The SAT based procedure is unable to
perform the necessary unsatisfiability check beyond 9 bits. The
last column in the table is the memory usage of approach.

TABLE I: Mastrovito multiplier implementation against Mont-
gomery multiplier circuit as specification. Time-out = 5400s;
MB = MegaByte(s); GB = GigaByte(s)

Field Size (k) # of Gates SAT Thm. V.1 MemMas Mont
4 48 96 0.09 0.03 8.16 MB
8 292 319 158.34 0.41 20.36 MB
9 237 396 4,507 0.47 18.95 MB

10 285 480 TO 0.84 28.2 MB
16 1,836 1,152 TO 73.63 0.32 GB
32 5,482 4,352 TO 3621 2.4 GB

We can also perform the rectification when a polynomial
specification is given instead of a specification circuit. Table II
shows the result of checking whether the incorrect Mastrovito
implementation can be rectified at a particular location against
the word level specification polynomial Z = A×B.

TABLE II: Mastrovito multiplier implementation against poly-
nomial specification Z = AB. Time-out = 5400s; MB =
MegaByte(s); GB = GigaByte(s)

Field Size (k) # of Gates Thm. V.1 Mem
4 48 0.01 7.24 MB
8 292 0.08 14.95 MB

16 1,836 4.83 0.2 GB
32 5,482 100.52 1.42 GB
64 21,813 4,989 12.25 GB

Point addition is another important operation required for
the task of encryption, decryption and authentication in Elliptic
Curve Cryptography (ECC). Modern approaches represent
the points in projective coordinate systems, e.g., the López-
Dahab (LD) projective coordinate [35], due to which the point
addition operation can be implemented as polynomials in the
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field. Each polynomial can be implemented as a circuit. Table
III shows the result for one of these blocks.

TABLE III: Point Addition circuit against polynomial spec-
ification D = B2 · (C + aZ2

1). Time-out = 5400s; MB =
MegaByte(s); GB = GigaByte(s)

Field Size (k) # of Gates Thm. V.1 Mem
8 243 0.05 9.73 MB
16 1,277 3.48 88.78 MB
32 3,918 86.75 0.47 GB
64 1,5305 4,923 7.13 GB

As apparent from these experiments, the SINGULAR tool
needs a large amount of memory even for 64-bit benchmarks
due to its list based data-structure. We are trying alternate
implementations for polynomial operations (e.g. ZBDDs based
reductions in [36]) to obtain better results.

VI. CONCLUSION

This paper has presented a detailed theory describing the
notion of Craig interpolants for a pair of polynomial ideals
in finite fields with no common zeros. The approach utilizes
concepts from computational algebraic geometry. Interpolants
always exist in this setting, and they correspond to the variety
of an elimination ideal. In addition to defining the smallest and
the largest interpolants, techniques are described to compute
them using Gröbner basis concepts. The total number of inter-
polants is also determined by counting the number of points
in the variety of (set) difference of the largest and the smallest
interpolants. An application based on circuit verification has
been presented to demonstrate the use of interpolants in finite
fields. With the theory of interpolants in Fq in place, we are
now pursuing application of interpolants for circuits in a word-
level setting.
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Master’s thesis, Carnegie Mellon University, 2009.

[19] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher, “Inter-
polant Strength,” in Verification, Model Checking and Abstract Interpre-
tation, 2010, pp. 129–145.

[20] G. Weissenbacher, “Interpolant Strength Revisited,” in Proc. Intl. Conf.
Theory and Applications of Satisfiability Testing, 2012, pp. 312–326.
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