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Abstract—When formal verification of arithmetic circuits iden-
tifies the presence of a bug in the design, the task of rectification
needs to be performed to correct the function implemented
by the circuit so that it matches the given specification. This
paper addresses the problem of rectification of buggy finite
field arithmetic circuits. The problems are formulated by means
of a set of polynomials (ideals) and solutions are proposed
using concepts from computational algebraic geometry. Single-fix
rectification is addressed – i.e. the case where any (set of) bugs can
be rectified at a single net (gate output). We determine if single-
fix rectification is possible at a particular location, formulated
as the Weak Nullstellensatz test. Subsequently, we introduce the
concept of Craig interpolants in polynomial algebra over finite
fields and show that the rectification function can be computed
using algebraic interpolants. Experimental results demonstrate
the superiority of our approach against SAT-based approaches.

I. INTRODUCTION

Past few years have seen extensive investigations into formal
verification of arithmetic circuits. Circuits that implement
polynomial computations over large bit-vector operands are
hard to verify using methods such as SAT/SMT-solvers, de-
cision diagrams, etc. Recent techniques have investigated the
use of polynomial algebra and algebraic geometry techniques
for their verification. These include verification of integer
arithmetic circuits [1] [2] [3] and also finite field circuits
[4] [5]. While these are successful in proving correctness or
detecting the presence of bugs, the problem of debugging and
correction of arithmetic circuits has only just begun to be
addressed [6], [7].

In this paper, we address the problem of rectification of
buggy finite field arithmetic circuits. Our problem setup is as
follows:
• A specification model (Spec) is given either as a polyno-

mial description fspec over a finite field, or as a golden
model of a finite field arithmetic circuit. The finite field
considered is the field of 2k elements (denoted by F2k ),
where k corresponds to the operand-width (bit-vector
word length). An implementation circuit C is also given.

• Equivalence checking is performed between the Spec and
the circuit C, and the presence of a bug is detected. No
restrictions on the number, type, or locations of the bugs
are assumed.

This research is funded in part by the US National Science Foundation
grants CCF-1619370 and CCF-1320385.

• We assume that error-diagnosis has been performed, and a
subset X of the nets of the circuit is identified as potential
rectification locations.

Given the Spec, the buggy implementation circuit C, the
set X of potential rectifiable locations, our objective is to
determine whether or not the buggy circuit can be rectified
at one particular net (location) xi ∈ X . This is called single-
fix rectification in literature [8]. If a single-fix rectification
does exist at net xi in the buggy circuit, then our subsequent
objective is to derive a polynomial function U(XPI) in terms
of the set of primary input variables XPI . This polynomial can
be translated (synthesized) into a logic subcircuit such that
xi = U(XPI) acts as the rectification function for the buggy
circuit C so that C matches the specification.

Another important contribution of our work is that we
show that the rectification function U(XPI) can be determined
based on the concept of Craig interpolants [9] in algebraic
geometry. While Craig interpolation is a well-studied concept
in propositional and first-order logic theories, we recently
showed in [10] that polynomial algebra in finite fields also
admits Craig interpolation, and described algorithms to com-
pute interpolants. Based on our results of [10], we show how
to compute a rectification function using Craig interpolation
in finite fields.

Our techniques and algorithms are based on symbolic
computer algebra and algebraic geometry – particularly on
the concepts of the Weak Nullstellensatz and Gröbner bases
[11]. We show how to apply our techniques to rectify finite
field arithmetic circuits, where conventional SAT-solver based
rectification approaches are infeasible.

Review of the Previous Work: Automated diagnosis and
rectification of digital circuits has been addressed in [12],
[13]. The paper [14] presents algorithms for synthesizing
Engineering Change Order (ECO) patches. The use of inter-
polation for ECO has been presented in [8], [15], [16]. The
single-fix rectification function approach in [15], [16] has been
extended in [8] to generate multiple partial-fix functions. As
these approaches are SAT based, they work well for random
logic circuits but are not efficient for arithmetic circuits.
In contrast to these works, our work presents a word-level
formulation for single-fix rectification. Computer algebra has
been utilized for circuit debugging and rectification in [17],
[6], [7]. These approaches rely heavily on the structure of
the circuit for coefficient calculation. If the arithmetic circuit
contains redundancies, the approach may not identify the
buggy gate due to ambiguity in coefficient values. On the978-1-5386-4756-1/18/$31.00 c©2018 IEEE
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other hand, our approach although more efficient for finite
field arithmetic circuits, is applicable to any circuit in general.

The paper is organized as follows. The following section
describes preliminary concepts in computer algebra and de-
scribe an equivalence checking framework using the Weak
Nullstellensatz over finite fields. Section III presents our main
theorem on identifying a rectification location and obtaining
the correction function using Craig interpolants in finite fields.
Section IV presents our experimental results and section V
concludes the paper.

II. PRELIMINARIES

Let Fq denote the finite field of q elements where q= 2k and
k is the operand width. Let R=Fq[x1, . . . ,xn] be the polynomial
ring in n variables x1, . . . ,xn, with coefficients from Fq. A
monomial is a power product of variables xe1

1 ·x
e2
2 · · ·xen

n , where
ei ∈ Z≥0, i ∈ {1, . . . ,n}. A polynomial f ∈ R is written as a fi-
nite sum of terms f = c1X1+c2X2+ · · ·+ctXt , where c1, . . . ,ct
are coefficients and X1, . . . ,Xt are monomials. A monomial
order > (or a term order) is imposed on the ring so that the
monomials of all polynomials f = c1X1 + c2X2 + · · ·+ ctXt
are ordered w.r.t. >, such that X1 > X2 > · · · > Xt , where
lm( f ) = X1 is called the leading monomial of f . In this work,
we employ lexicographic (lex) term orders (see Definition
1.4.3 in [11]).

We model the given circuit C by a set of multivariate
polynomials f1, . . . , fs ∈ F2k [x1, . . . ,xn]; here x1, . . . ,xn denote
the nets (signals) of the circuit. Every Boolean logic gate of
C is represented by a polynomial in F2, as F2 ⊂ F2k . This is
shown below. Note that in F2k , −1 =+1.

z = ¬a → z+a+1 (mod 2)
z = a∧b → z+a ·b (mod 2)
z = a∨b → z+a+b+a ·b (mod 2)
z = a⊕b → z+a+b (mod 2)

(1)

Given a set of polynomials F = { f1, . . . , fs} in R, the ideal
J ⊆ R generated by them is:

J = 〈 f1, . . . , fs〉= {
s

∑
i=1

hi · fi : hi ∈ R}.

The polynomials f1, . . . , fs form the generators of J.
Let aaa = (a1, . . . ,an) ∈ Fn

q be a point in the affine space, and
f a polynomial in R. If f (aaa) = 0, we say that f vanishes on
aaa. In verification, we have to analyze the set of all common
zeros of the polynomials of F that lie within the field Fq.
In other words, we need to analyze solutions to the system
of polynomial equations f1 = f2 = · · ·= fs = 0. This zero set
is called the variety. It depends not just on the given set of
polynomials but rather on the ideal generated by them. We
denote it by V(J) =V( f1, . . . , fs), where:

V(J) =V( f1, . . . , fs) = {aaa ∈ Fn
q : ∀ f ∈ J, f (aaa) = 0}.

We denote the complement of a variety, Fn
q \V(J), by V(J).

Algebraic Miter for Equivalence Checking: Given fspec as
the specification polynomial, we need to construct an algebraic
miter between fspec and C. For equivalence checking, we need

to prove that the miter is infeasible. Fig. 1 depicts how a word-
level algebraic miter is setup. Suppose that A = {a0, . . . ,ak−1}
and Z = {z0 . . . ,zk−1} denote the k-bit primary inputs and
outputs of the finite field circuit. Then A = ∑

k−1
i=0 aiα

i,Z =

∑
k−1
i=0 ziα

i correspond to the word-level polynomials for the
inputs and outputs of the circuit. Here α is the primitive
element of F2k . Let ZS be the word-level output for fspec,
which computes some polynomial function F (A) of A, so that
fspec : ZS +F (A). The word-level outputs Z,ZS are mitered to
check if for all inputs, Z 6= ZS is infeasible.

Spec Poly

Circuit Implementation C

Word-Level
Miter

Fig. 1: Word-Level Miter

In finite fields, the disequality Z 6= ZS can be modeled as
a single polynomial fm, called the miter polynomial, where
fm = t · (Z− ZS)− 1, and t is introduced as a free variable.
If Z = ZS, Z−ZS = 0. So fm : t · 0+ 1 = 0 has no solutions
(miter is infeasible). Whereas if for some input A, Z 6= ZS, then
Z−ZS 6= 0. Let t−1 = (Z−ZS) 6= 0. Then fm : t · t−1− 1 = 0
has a solution as t, t−1 become multiplicative inverses of each
other. Thus the miter becomes feasible.

In this way, equivalence checking using the algebraic
model is solved as follows: Construct an ideal J =
〈 fspec, f1, . . . , fs, fm〉, as described above. Then determine if
the variety V (J) = /0? If V (J) = /0, the miter is infeasible, and
C implements fspec. If V (J) 6= /0, the miter is feasible, and
there exists a bug in the design.

The Weak Nullstellensatz: To ascertain whether V (J) = /0,
we employ the Weak Nullstellensatz over Fq, for which we use
the following notations. Given two ideals J1 = 〈 f1, . . . , fs〉,J2 =
〈h1, . . . ,hr〉, the sum J1+J2 = 〈 f1, . . . , fs,h1 . . . ,hr〉, and V (J1+
J2) =V (J1)∩V (J2). Moreover, if J1 ⊆ J2 then V (J1)⊇V (J2).

For all elements α ∈ Fq,α
q = α. Therefore, the polynomial

xq− x vanishes everywhere in Fq, and is called the vanishing
polynomial of the field. Let J0 = 〈xq

1− x1, . . . ,x
q
n− xn〉 be the

ideal of all vanishing polynomials in R.

Theorem II.1 (The Weak Nullstellensatz over finite fields
(from Theorem 3.3 in [18])). For a finite field Fq and the
ring R = Fq[x1, . . . ,xn], let J = 〈 f1, . . . , fs〉 ⊆ R, and let J0 =
〈xq

1 − x1, . . . ,x
q
n − xn〉 be the ideal of vanishing polynomials.

Then V(J) = /0 ⇐⇒ 1 ∈ J+ J0.

To determine whether V (J) = /0, we need to test whether or
not the unit element 1 is a member of the ideal J+J0. For this
ideal membership test, we need to compute a Gröbner basis
of J+ J0.

Gröbner Basis of Ideals: An ideal may have many different
sets of generators: J = 〈 f1, . . . , fs〉= · · ·= 〈g1, . . . ,gt〉. Given a
non-zero ideal J, a Gröbner basis (GB) for J is a finite set of
polynomials G = {g1, . . . ,gt} satisfying 〈{lm( f ) | f ∈ J}〉 =
〈lm(g1), . . . , lm(gt)〉. Then J = 〈G〉 holds and so G = GB(J)
forms a basis for J. A GB G possesses important properties
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that allow to solve many polynomial computation and decision
problems. The famous Buchberger’s algorithm (see Alg. 1.7.1
in [11]) takes as input the set of polynomials F = { f1, . . . , fs}
and computes the GB G = {g1, . . . ,gt}. A GB can be reduced
to eliminate redundant polynomials from the basis. A reduced
GB is a canonical representation of the ideal. When 1 ∈ J,
then G = reduced GB(J) = {1}.

Thus, for equivalence check, we compute a reduced GB
G = GB(J + J0), and see if G = {1}. If so, V (J) = /0 and the
miter is infeasible. If G 6= {1}, then there exists a bug in the
design.

Craig interpolation: The Weak Nullstellensatz is the poly-
nomial analog of SAT/UNSAT checking. For UNSAT prob-
lems, the formal logic and verification communities have ex-
plored the notion of abstraction of functions by means of Craig
interpolants, which has been applied to circuit rectification [8].
In propositional logic, the concept is defined as follows:

Definition II.1. Let (A,B) be a pair of CNF formulae (sets
of clauses) such that A∧B is unsatisfiable. Then there exists
a formula I such that: (i) A =⇒ I; (ii) I∧B is unsatisfiable;
and (iii) I refers only to the common variables of A and B,
i.e. Var(I) ⊆ Var(A)∩Var(B). The formula I is called the
interpolant of (A,B).

Given the pair (A,B) and their refutation proof, a procedure
called the interpolation system constructs the interpolant in
linear time and space in the size of the proof. In our work [10],
we have proposed the notion (theory and algorithms) of Craig
interpolants in polynomial algebra over finite fields, based on
the results of Nullstellensatz. These are presented and utilized
in this paper for rectification of arithmetic circuits.

Elimination Ideals: We employ one more concept, that of
elimination ideals.

Definition II.2. Given an ideal J ⊂ Fq[x1, . . . ,xn], the l-th
elimination ideal Jl is an ideal in R defined as Jl = J ∩
Fq[xl+1, . . . ,xn].

Theorem II.2 (Elimination Theorem (from Theorem 2.3.4
[11])). Given an ideal J ⊂ R and its GB G w.r.t. the lexico-
graphical (lex) order on the variables where x1 > x2 > · · ·> xn,
then for every 0 ≤ l ≤ n we denote by Gl the GB of l-th
elimination ideal of J and compute it as:

Gl = G∩Fq[xl+1, . . . ,xn].

Gl is called the l-th elimination ideal as it eliminates the first
l variables from J.

III. THEORY

This section presents our main theorem on checking whether
a buggy circuit is single fix rectifiable, and a procedure
for computing a correction function using the theory and
algorithms on Craig interpolants in finite fields [10].

After the verification of a circuit against the specification
detects the presence of a bug in the design, we are provided
with a list of potential gate-output nets xi’s. The circuit may or
may not be rectified at a particular xi. First we ascertain that
the circuit can indeed be rectified at some xi and then apply
a correction function U(XPI) as xi =U(XPI).

A. Single Fix Rectification

In this subsection, we formally set up the problem of
single fix circuit rectification. Using the Weak Nullstellensatz
(Theorem II.1), we formulate the test for rectifiability at a gate
output xi in the circuit. The following proposition will be used
later in this subsection.

Proposition III.1. Given two ideals J1 and J2 over some finite
field such that V (J1)∩V (J2) = /0, there exists a polynomial U
which satisfies V (J1)⊆V (U)⊆V (J2).

Proof. Over finite fields, V (J1) and V (J2) are finite sets of
points. There exists a set of points which contains V (J1) and
does not intersect with V (J2). As every set of points in finite
fields is a variety, let this variety be denoted by V (JI), where
JI is the corresponding ideal. Then V (J1) ⊆ V (JI) ⊆ V (J2).
In addition, we can construct a polynomial U whose roots
are exactly the points in V (JI) by means of the Lagrange’s
interpolation formula.

Now we present the theorem to check the circuit’s recti-
fiability at some gate output. Let us assume that a potential
rectifiable gate output is xi (i.e. ith gate) and a possible function
in primary inputs that can be implemented is xi =U(XPI) so
that the ith gate is represented by a polynomial fi : xi+U(XPI).
The ideal constructed from the polynomials for the gates
f1, . . . , fs of the circuit, the specification polynomial fspec, and
the miter polynomial fm, is denoted by J:

J = 〈 fspec, f1, . . . , fi : xi +U(XPI), . . . , fs, fm〉.

The following theorem checks whether the circuit is indeed
rectifiable at gate with output net xi.

Theorem III.1. Construct two ideals:
• JL = 〈 fspec, f1, . . . , fi : xi + 1, . . . , fs, fm〉 where fi : xi +

U(XPI) in J is replaced with fi : xi +1.
• JH = 〈 fspec, f1, . . . , fi : xi, . . . , fs, fm〉 where fi : xi+U(XPI)

in J is replaced with fi : xi.
Compute EL = (JL + J0) ∩ F2k [XPI ] and EH = (JH + J0) ∩
F2k [XPI ] to be the respective elimination ideals, where all
the non-primary input variables have been eliminated. Then
the circuit can be rectified with a logic function at net xi
with the polynomial function fi : xi +U(XPI) to implement
the specification iff 1 ∈ EL +EH .

Proof. We will first prove the if case of the theorem. Assume
1 ∈ EL +EH , or equivalently VXPI (EL)∩VXPI (EH) = /0. Using
Proposition III.1, we can find a polynomial U(XPI) such that,

VXPI (EL)⊆VXPI (U(XPI))⊆VXPI (EH) (2)

where the universal set for computing VXPI (EH) is FXPI
2k . Let us

assume that a point ppp exists in V (J). Point ppp is an assignment
to every variable in J such that all the generators of J are
satisfied. We denote by aaa, the projection of ppp on the primary
inputs (the primary input assignments under ppp). There are only
two possibilities for U(XPI),

1) U(aaa) = 1, or in other words aaa 6∈ VXPI (U(XPI)). It also
implies that the value of xi under ppp must be 1 because
xi +U(XPI) needs to be satisfied. Since the generator fi
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of JL also forces xi to be 1 and all its other generators are
exactly the same as that of J, ppp is also a point in V (JL).
Moreover, EL is the elimination ideal of JL, and therefore,
aaa ∈VXPI (EL). But this a contradiction to our assumption
that VXPI (EL)⊆VXPI (U(XPI)) and such a point aaa (and ppp)
does not exist.

2) U(aaa) = 0, or in other words aaa ∈ VXPI (U(XPI)). Using
similar argument as the previous case, we can show
that aaa ∈ VXPI (EH). This is again a contradiction to our
assumption VXPI (U(XPI))⊆VXPI (EH).

In conclusion, there exists no point in V (J) (or the miter is
infeasible) when U(XPI) satisfies Eqn. 2, and therefore, circuit
can be rectified at xi.

Now we will prove the only if direction of the proof. We
show that if 1 6∈ EL + EH , then there exists no polynomial
U(XPI) that can rectify the circuit. If 1 6∈ EL +EH , then EL
and EH have a common zero. Let aaa be a point in VXPI (EL) and
VXPI (EH). This point can be extended to some points ppp′′′ and ppp′′′′′′

in V (JL) and V (JH), respectively. Notice that in point ppp′′′ the
value of xi will be 1, and in ppp′′′′′′ xi will be 0. Any polynomial
U(XPI) will either evaluate to 0 or 1 for the assignment aaa to
the primary inputs. If it evaluates to 1, then we can say that
ppp′′′ is in V (J) as fi in J forces xi = 1 and all other generators
of J and JL are same. This implies that fm(ppp′′′) = 0 ( fm: miter
polynomial is feasible) and this choice of U(XPI) will not
rectify the circuit. If U(XPI) evaluates to 0, then ppp′′′′′′ is a point
in V (J).

Therefore, no choice of U(XPI) can rectify the circuit if
1 6∈ EL +EH .

a0

a1

b0

b1

c0

c3

c2

c1

r0

z1

z0

Fig. 2: A buggy 2-bit modulo multiplier circuit

Example III.1. Consider the buggy modulo multiplier circuit
in Fig. 2 where the gate output r0 should have been the output
of an XOR gate and the AND gate has been incorrectly imple-
mented. We want to apply Thm. III.1 at r0. The polynomials
for the gates of the correct circuit implementation are,

f1 : c0 +a0 ·b0; f2 : c1 +a0 ·b1; f3 : c2 +a1 ·b0;
f4 : c3 +a1 ·b1; f5 : r0 + c1 + c2; f6 : z0 + c0 + c3;
f7 : z1 + r0 + c3;

The problem is modeled over F4 and α is the primitive element
of F4. The word-level polynomials are f8 : Z+z0+z1α, f9 : A+
a0 +a1α, and f10 : B+b0 +b1α. The specification polynomial
is fspec : Zs +AB. We create a miter polynomial against this
specification as fm : t(Z−Zs)−1.

The ideals JL and JH are as follows,

JL = 〈 fspec, f1, . . . , f4,r0 +1, f6, . . . , f10, fm〉
JH = 〈 fspec, f1, . . . , f4,r0, f6, . . . , f10, fm〉

and the corresponding ideals EL and EH are as follows,

EL = 〈a0b1 +a1b0,a1b0b1 +a1b0,a0a1b0 +a1b0〉
EH = 〈b0b1 +b0 +b1 +1,a1b1 +a1 +b1 +1,a0b1 +a1b0 +1,

a0b0 +a0 +b0 +1,a0a1 +a0 +a1 +1〉

If we compute a Gröbner basis of EL +EH , it results in {1}.
Therefore, we can rectify this circuit at r0.

B. Craig Interpolants in Finite Fields

If xi is a feasible location for rectification, then the corre-
sponding EL and EH satisfy 1 ∈ EL +EH . We are now in a
position to introduce the notion of Craig interpolants in finite
fields which will help us in obtaining U(XPI) from an “ideal-
interpolant” JI defined below.

Definition III.1 (Interpolants in finite fields). Given two ideals
JA ⊂ Fq[A,C] and JB ⊂ Fq[B,C] where A,B,C denote the three
disjoint sets of variables such that VA,B,C(JA)∩VA,B,C(JB) = /0.
Then there exists an ideal JI satisfying the following proper-
ties:

1) VA,B,C(JI)⊇VA,B,C(JA)
2) VA,B,C(JI)∩VA,B,C(JB) = /0

3) Generators of JI contain only the C-variables; or JI ⊆
Fq[C].

We call VA,B,C(JI) the interpolant in finite fields of the pair
(VA,B,C(JA),VA,B,C(JB)), and the corresponding ideal JI the
ideal-interpolant.

Example III.2. Consider the ring R=F2[a,b,c,d,e], partition
the variables as A = {a},B = {e},C = {b,c,d}. Let ideals

JA = 〈ab,bd,bc+ c,cd,bd +b+d +1〉+ J0,A,C

JB = 〈b,d,ec+ e+ c+1,ec〉+ J0,B,C
where J0,A,C and J0,B,C are the corresponding ideals of

vanishing polynomials. Then, we have

VA,B,C(JA) = FB
q ×VA,C(JA) = (abcde) :

{01000,00010,01100,10010,01001,00011,01101,10011}
VA,B,C(JB) = FA

q ×VB,C(JB) = (abcde) :

{00001,00100,10001,10100}

The ideals JA,JB have no common zeros as
VA,B,C(JA) ∩ VA,B,C(JB) = /0. The pair (JA,JB) admits a
total of 8 interpolants:

1) V (JS) = (bcd) : {001,100,110} JS = 〈cd,b+d +1〉
2) VC(J1) = (bcd) : {001,100,110,101}

J1 = 〈cd,bd +b+d +1,bc+ cd + c〉
3) VC(J2) = (bcd) : {001,100,110,011}

J2 = 〈b+d +1〉
4) VC(J3) = (bcd) : {001,100,110,111}

J3 = 〈b+ cd +d +1〉
5) VC(J4) = (bcd) : {001,100,110,011,111}

J4 = 〈bd +b+d +1,bc+b+ cd + c+d +1〉
6) VC(J5) = (bcd) : {001,100,110,101,111}

J5 = 〈bc+ c,bd +b+d +1〉
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7) VC(J6) = (bcd) : {001,100,110,101,011}
J6 = 〈bd +b+d +1,bc+ cd + c〉

8) VC(JL) = (bcd) : {001,011,100,101,110,111}
JL = 〈bd +b+d +1〉.

It is easy to check that all V (JI) satisfy the 3 conditions
of Def. III.1. Note also that V (JS) is the smallest interpolant,
contained in every other interpolant. Likewise, V (JL) contains
all other interpolants and it is the largest. The other contain-
ment relationships are shown in the corresponding interpolant
lattice in Fig. 3; VC(J1)⊂VC(J5),VC(J1)⊂VC(J6), etc.

Fig. 3: Interpolant lattice for Example III.2

Theorem III.2. (from Theorem IV.1 in [10]) An ideal-
interpolant JI , and correspondingly the interpolant VA,B,C(JI),
as given in Def. III.1, always exists.

Another result from [10] (Theorem IV.2) that we make use
of here is that the smallest interpolant can be computed as
JI = JA∩Fq[C].

Back to our formulation of single fix rectification, we have
1∈ EL+EH or V (EL)∩V (EH) = /0. EL and EH are elimination
ideals containing only XPI variables. As a result, the set of
variables A, B, and C are primary inputs. Moreover, we want
to compute an ideal JI in XPI such that VXPI (EL)⊆VXPI (JI) and
VXPI (JI)∩VXPI (EH) = /0. The smallest ideal-interpolant JI =
EL∩F2[XPI ] = EL itself. Therefore, we use EL to compute the
correction function U(XPI).

C. Obtaining U(XPI) from EL

In finite fields, given an ideal J, it always possible to find a
polynomial U such that V (U) =V (J). The reason is that every
ideal in a finite field has a finite variety and a polynomial with
those points as its roots can always be constructed. Let the
generators of J be denoted by g1, . . . ,gt . We can compute U
as,

U = (1+g1)(1+g2) · · ·(1+gt)+1 (3)

It is easy to assert that V (U) =V (JI). Using the Eqn. 3, we
can write a recursive procedure as presented in Algorithm 1 to
compute U . In addition, at every recursive step we also reduce
the intermediate sum by J0 (line 6) to avoid large degree terms.
In our setting, U =U(XPI) and J = EL, and therefore, we can

find a correction function xi +U(XPI) which can be used to
rectify the circuit.

Using this procedure for Example III.1, we have U(XPI) as
a0b1 + a1b0 and the correction function as r0 + a0b1 + a1b0

Algorithm 1 Compute U from JI such that V (U) =V (JI)

1: procedure compute U(JI ,J0) //JI = { f1, . . . , fs}
2: if size(JI) = 1 then
3: return (1+ JI [1])
4: subsetJ = {JI [1],J[2], . . . ,JI [size(JI)−1]}
5: poly S1 = compute U(subsetJ,J0)

6: Perform S1 · JI [size(JI)]
J0−→+ S2

7: return S1 +S2

which can be synthesized as r0 = (a0∧b1)⊕(a1∧b0) (replac-
ing the modulo 2 product and sum with Boolean AND and
XOR, respectively).

IV. EXPERIMENTAL RESULTS

We have performed experiments on finite field arithmetic
circuits (used in cryptography) where the implementation is
different from the specification due to exactly one gate. This
is to ensure that a single fix rectification is feasible. We
implement the procedure described in the previous section
(Thm. III.1 and Algo. 1) using the SINGULAR symbolic
algebra computation system [ver. 4-1-0][19]. The experiments
were conducted on a desktop computer with a 3.5GHz Intel
CoreTM i7-4770K Quad-core CPU, 16 GB RAM, running 64-
bit Linux OS.

We have performed experiments with three different types
of finite field benchmarks. First two of them are Mastro-
vito and Montgomery multiplier circuits used for modular
multiplication. Mastrovito multipliers compute Z = A × B
(mod P(x)) where P(x) is a given primitive polynomial for
the datapath size k. Montgomery multipliers are preferred for
exponentiation operations (often required in cryptosystems)
over Mastrovito multipliers. The last set of benchmarks are
circuits implementing point addition over elliptic curves used
for encryption, decryption and authentication in elliptic curve
cryptography.

TABLE I: Mastrovito multiplier rectification against Mont-
gomery multiplier specification. Time in seconds; Time-out
= 5400s; k: Operand width

k # of Gates SAT Thm. III.1 Algo. 1 MemMas Mont
4 48 96 0.09 0.03 0.001 8.16 MB
8 292 319 158.34 0.41 0.006 20.36 MB
9 237 396 4,507 0.47 0.001 18.95 MB

10 285 480 TO 0.84 0.001 28.2 MB
16 1,836 1,152 TO 73.63 0.024 0.32 GB
32 5,482 4,352 TO 3621 0.043 2.4 GB

First we present the results for the case where the Thm. III.1
is applied at a gate location such that the circuit is completely
rectifiable. Table I compares the execution time for SAT based
approach [8] and our approach (Theorem III.1) for checking
whether a buggy Mastrovito multiplier can be rectified at a
certain location in the circuit against a Montgomery multiplier
specification. We have implemented the SAT procedure using
the abc tool [20]. We execute the command inter on the ON
set and OFF set as described in [8]. The SAT based procedure
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is unable to perform the necessary unsatisfiability check for
circuits beyond of 9 bit operand words. Using our approach,
the polynomial U(XPI) needed for rectification is computed
from EL and the time is reported in Table I in the Algo. 1
column. The last column in the table is the memory usage of
our approach.

We can also perform the rectification when a polynomial
specification is given instead of a specification circuit. Table II
shows the result of checking whether the incorrect Mastrovito
implementation can be rectified at a particular location against
the word level specification polynomial ZS = AB.

TABLE II: Mastrovito multiplier rectification against poly-
nomial specification ZS = AB. Time in seconds; Time-out =
5400s; k: Operand width

k # of Gates Thm. III.1 Algo. 1 Mem
4 48 0.01 0.001 7.24 MB
8 292 0.08 0.006 14.95 MB

16 1,836 4.83 0.038 0.2 GB
32 5,482 100.52 0.015 1.42 GB
64 21,813 4,989 0.117 12.25 GB

Point addition operation can be represented as polynomials
because modern approaches represent the points in projective
coordinate systems, e.g., the López-Dahab (LD) projective co-
ordinate [21]. Each of these polynomials can be implemented
as a circuit. Table III shows the result for one of these blocks.
For all the experiments, the most computationally expensive
part is the computation of ideals EL and EH .

TABLE III: Point Addition circuit rectification against polyno-
mial specification D = B2 · (C+aZ2

1). Time in seconds; Time-
out = 5400s; k: Operand width

Field Size (k) # of Gates Thm. III.1 Algo. 1 Mem
8 243 0.05 0.022 9.73 MB

16 1,277 3.48 0.019 88.78 MB
32 3,918 86.75 0.028 0.47 GB
64 1,5305 4,923 0.053 7.13 GB

We also performed experiments where we apply Thm. III.1
at a gate output which cannot rectify the circuit. We used
Montgomery circuit as the specification and Mastrovito as the
implementation as we did for the experiments in Table I. For
4 and 8 bits size cases, the execution time was comparable for
Thm. III.1 and SAT based approach and was ∼ 0.1 seconds.
When we tried the 16 bit case, the SAT based approach was
able to complete in 0.11 seconds. On the other hand, Thm. III.1
formulation resulted in a memory explosion and consumed
∼ 30 GB of memory in 5-6 minutes. This is due to the
fact when 1 6∈ EL + EH , then GB(EL + EH) is not equal to
{1} and the Gröbner basis algorithm produces a very large
generating set. To improve our approach we are working on
term ordering heuristics so that our approach can perform
efficiently in both cases. We also want to employ better data
structures as SINGULAR’s data structure is not very memory
efficient and also has an upper limit on the number of variables
(32,768) that can be accommodated in the system.

V. CONCLUSION

This paper considers the single-fix rectification of circuits
after the verification has detected a bug in the design. A num-

ber of possible gate outputs are provided whose functionality
can be changed so that circuit corresponds to the specification.
We want to select one such (single) gate output so that by
applying a correction function there, the circuit is rectified.
We present a theorem that answers definitively whether a
single fix rectification is feasible at a particular gate output.
We also briefly describe the notion and definition of Craig
interpolants in finite fields which is used to obtain a correction
function. Experiments performed over finite field arithmetic
circuits shows the efficiency of our approach and also points
out the regions for improvements.
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