
Analog Synthesizer with Digital Control

Aros Aziz1, Jay Heiland2, and Michelle Simmons3

https://jayheiland.github.io/CE Senior Project

Abstract— The goal of this senior project was to take
the best parts of both digital and analog synths and
combine them into a working, scalable prototype for an
analog synth with digital control. The core components of
this project consist of a software application, synthesizer
modules, and the software and hardware interfaces
between them. On Demo Day we were able to show off
the most important and core parts of our project, which
could be scaled to a much larger product.

I. INTRODUCTION

Synthesizers are musical instruments that have
been popular with musicians and producers for
decades. Synths see ubiquitous use in the popular
music of today, and it is safe to assume that many
of the artists that use them are using their digital
variety; that is, using digitally simulated audio
circuits on a computer via services like Ableton
Live or Serum. These digital modules are often
much cheaper than their older, analog counterparts.
In addition, they give users the ability to save the
settings of their favorite sounds, allowing them
to revisit previous patches with the click of a
button. Despite digital synths’ advantages in cost
and convenience, many artists are now returning
to analog synths for their (perceived) better sound
quality [1]. Unfortunately, what these artists gain
in quality they lose in convenience.

Our senior project takes the best of both the dig-
ital and the analog synths; it marries the superior
sound production of the analog synth modules with
the convenience of the digital synth. We designed
analog circuits to produce and modify audio sig-
nals, where each circuit has its variable resistances
controllable by a computer. In addition to reading
and setting the values of the variable resistances
(potentiometers), our desktop application can also

123A. Aziz (arosaziz96@gmail.com), J. Hei-
land (jay.heiland@gmail.com), and M. Simmons
(michelle.simmons@utah.edu) are seniors in Computer Engineering
at the University of Utah in Salt Lake City.

save settings and load them back on at a later
time, providing the artist with the same level of
convenience as a traditional digital synth.

Our project comprises of three major parts:
our software application, our modules, and the
software and hardware that interfaces between
them. Our MIDI keyboard serves as an important
peripheral that makes the demo of our project
interactive and exciting. By the beginning of fall
semester, we had decided not to pursue our stretch
goal of implementing an automated switch matrix
between the modules, as none of us believed we
would have the time, skill, or interest to work with
the mechanical hardware.

We have three total modules: a voltage con-
trolled oscillator (VCO), a high-pass voltage con-
trolled filter (high-pass VCF), and a low-pass
voltage controlled filter (low-pass VCF). By the
time of the demo on Demo Day, only our VCO
could be demoed. Both our HP VCF and our LP
VCF had been working the previous afternoon;
unfortunately, we used the last of some of our
expensive parts in the attempt to mount the VCFs
onto strip-boards. After Demo Day, we decided as
a team that we are pleased with our final demo,
and not to pay for new parts and shipping at great
expense in order to fix our VCFs.

Our software application provides an easy and
attractive way to control the synth, with all the
technical details hidden completely behind-the-
scenes. Using the desktop application, users can
change potentiometer values on each individual
module, save the values of each module, and load
old configurations. The application also always
displays current potentiometer values, even if they
are changed physically (via rotary encoder) rather
than digitally. The integration between our desktop
application and our modules consists of embed-
ded C code, which is robust and scalable. The
embedded code allows a computer to read from



and write to the values of the potentiometers on
the digipot chips. It also allows rotary encoders to
change the values of those potentiometers. These
two capabilities are what allow both the physical
and digital control of the analog synth’s sound.

II. TECHNICAL DESIGN
As mentioned in the introduction, our project

is made up of three major parts: the software
application, the modules, and the software and
hardware interfaces between them. The following
sections will go into detail of each of these parts
and explain how they were designed and some of
the challenges that went with them.

A. Synth Modules
We have three modules: a VCO, a high-pass

VCF, and a low-pass VCF. Voltage control is an
important concept in modular synthesis, and we
utilized it in all three of our modules. Each module
has a control voltage (CV) input that modulates
its output. In the VCO, the input control voltage
dictates the frequency of the VCO’s output. In this
case, the CV is discrete; each discrete voltage cor-
responds to a distinct pitch. This CV was supplied
by the MIDI controller keyboard at our demo; the
CV input to the VCO is what made the synth
playable like a piano. In the VCFs, the CV was
continuous. We chose to simulate a low-frequency
oscillator (LFO) as the CV input to the VCFs, and
we did so by using the function generator to supply
a 1 V peak-to-peak sine wave at a frequency of 4
Hz. The LFO/VCF combination is a common one
in musical synthesis. The CV causes the output
signal of the VCF to audibly pulse in time with
the LFO.

The design of these modules turned out not only
to be technically challenging, but also expensive.
We breadboarded and tested each module individ-
ually before we augmented them with digipots and
rotary encoders.

1) VCO
Our VCO is the music generator of our
synth. It recieves CV input and produces a
variable-frequency audio signal as output. Its
most important component is the CEM3340,
a VCO chip. The module has as its outputs
both a triangle wave and a sawtooth wave;
the user may choose which waveform to use

by choosing the corresponding audio jack,
labeled clearly on the PCB for the VCO.

Fig. 1. Original schematic for VCO [2]

The Coarse Tune 100 Kohm potentiometer in
the schematic, which we later replaced with
a digipot, changes the pitch of the output. So
while you play Mary Had a Little Lamb on
the keyboard, if you change the value of that
potentiometer, your entire song may shift to
be two octaves higher, but it will still be the
original song.
Part of our original hardware was a cus-
tom PCB designed using Eagle and ordered
through OshPark. Fig. 2 shows the PCB
schematic for the VCO.

Fig. 2. PCB schematic of the VCO

This schematic includes custom footprints
that we either created or found on the web
and modified in order to meet the specifica-
tions of our breadboarded prototype.



In addition to creating the schematic, the
footprints had to be placed in positions that
were optimal for the wiring between com-
ponents. Many attempts were made to find
the optimal solution and eventually one was
found to be the best positioning for all the
parts. In addition to placement design, we
needed drilled holes on the four corners of
the custom board so that we could screw it
through an acrylic attached to the Eurorack
case at the end for Demo Day purposes. Fig.
3 shows an image of the PCB design of the
finalized custom PCB.

Fig. 3. PCB design of the VCO

For the sake of easy soldering, we made an
effort to make sure that a majority of the
components were through-hole. In the end,
we were able to make sure every part going
onto the board was through-hole except for
one, which was the digital potentiometer.

2) VCFs
The VCFs each take two inputs: audio signal
and CV. The audio signal could feasibly
come from any source, but in our synth, it
was most practical (and made for the best

sound) to use the output from the VCO. The
CV input came from the function genera-
tor’s LFO. We determined early on in the
semester that an LFO module would be too
complicated for us to tackle, but with more
time, we could build an LFO and easily
integrate our digipot and rotary encoder to
make it a fully functional module in our
unique synth.
The original schematics for the VCFs do not
allow the user to control the cutoff frequency
of the filters, so we added that feature. These
changes are shown via the original and mod-
ified schematic of the low-pass VCF, in Fig.
4 and Fig. 5, respectively.

Fig. 4. Original schematic for Low-Pass VCF [3]

Notice the lack of any potentiometers in
this schematic that would allow the user to
change the cutoff frequency of the filter. Pay
particular attention to the input labeled ”Vc,”
as that is where our changes were made.
Those changes are shown in Fig. 5.
The value of the 100 Kohm potentiometer
controls the cutoff frequency of the filter.
This is the potentiometer that would later
become a digipot. The CV input and the
voltage that determines the cutoff frequency
are summed together in a summing amplifier
to produce the final voltage that the original
VCF sees.
The summing amplifier and potentiometer
were added in the exact same fashion to the
high-pass VCF, shown in Fig. 6.
Both of the VCFs were working with the
digipots and rotary encoders the day before



Fig. 5. Modified schematic for Low-Pass VCF

Demo Day. That evening, in an attempt
to make the demo looking as polished as
possible, we tried to solder the VCFs to
strip-boards. Unfortunately, once the sol-
dering was finished, the VCFs no longer
functioned–most likely due to an undetected
short-circuit. In our exhaustion and hurry, we
fried the last of our remaining components
needed for the VCFs.

B. Embedded Software

We used the AD5144 digital potentiometers in
all three of our modules. The VCO used one chip,
and the two VCFs shared a second chip. In the
VCO, the digipot controls the pitch register of the
output signal. In the VCFs, each digpot controls
the cutoff frequency of its fitler. The digital po-
tentiometers communicate with the microcontroller
via the I2C protocol. Each digipot has its own
address so that the master (microcontroller) knows
which slave (digipot) it is dealing with. To acheive
two addresses, the first digipot chip has its address
pin (pin 20) connected to +5V, and the second
digipot chip has its address pin unconnected [4].
Each chip has four individual potentiometers. Each
potentiometer has two terminals and a wiper–for
instance, A1, W1, and B1 represent one individual

Fig. 6. Modified schematic for High-Pass VCF [3]

potentiometer.

Fig. 7. Pinout for the AD5144 digital potentiometer chip [4]

We used PEC12R rotary encoders, which use
quadrature encoding [5]. The rotary encoders also
communicate to the microcontroller via the I2C
protocol.

We used the STM32F072 ARM Microcontroller
to control and listen to the digipots and rotary
encoders via I2C, and to communicate information
to a computer via USART.

Our embedded code program allows the digipots
and rotary encoders to communicate with the mi-



crocontroller via I2C, and it allows the micro-
controller to communicate with the computer via
USART. The overall flow of information is laid out
in the diagram in Fig. 8, where the PCB represents
the synth’s modules.

Fig. 8. Communication protocols between our circuits, the
microcontroller, and the computer

The digipot communicates to the microcon-
troller through its SDA and SCL pins. The micro-
controller can read the value of each potentiometer
on each chip, or write to any individual poten-
tiometer on either chip, on command.

The first time we installed the digipot into our
VCO, we fried the chip. The AD5144 can only
endure a maximum voltage difference of 5V, and
we had connected it to +12V and -12V, exposing
it to a voltage difference of 24V. To limit its
exposure, we designed an amplifier circuit that
amplifies the 0 to 5V output of the digipot to the
-12 to +12V voltage that the VCO expects. We
used the LM741 amplifier to do this.

Fig. 9 shows the connection between the mi-
crocontroller and the digipot chip, as well as the
amplifier circuit.

The amplifier circuit connects to any given mod-
ule at Min. Only one potentiometer is shown wired
to a module in the figure, for simplicity. In practice,
though, all four potentiometers on the chip could
be used in synth modules, each potentiometer with
its own amplifier circuit.

The rotary encoder works slightly differently;

Fig. 9. Digital potentiometer chip’s connections to module and
microcontroller

it communicates to the microcontroller through
interrupts. Observe Fig. 10. The two terminals of
the rotary encoder are wired to a single XOR
gate; whenever the knob of the rotary encoder is
spun, that movement is reflected by a change in
exactly one of those terminals. Thus, the output of
the XOR gate will change every time the rotary
encoder is spun. The output of the XOR gate is
wired to the microcontroller (in Fig. 10, labled
PC6) so that every time its value changes, an
interrupt is triggered. When this interrupt occurs,
the embedded code checks the value of one of the
terminals (in Fig. 10, labeled PC9) to see whether
the encoder was turned left or right. If left, the mi-
crocontroller sends the associated potentiometer a
command to increase its value. If right, a command
to decrease.

In order to replace an analog potentiometer with
a digital one, simply remove the analog poten-
tiometer entirely and reconnect its old connections
to the digital potentiometer. Be careful: replace
voltages above 5V with 5V, and voltages below
0V with ground, to ensure that the digipot never
sees a voltage difference greater than 5V. The
digipot and rotary encoder combination are an
extremely scalable component of our project. They
could easily be implemented in any synth module,
without any further modifications. Time and cost



Fig. 10. Rotary encoder and XOR gate, and their connections to
the microcontroller

were our only barriers from adding more modules
to our synth; any additional modules would have
been immediately ready to communicate with our
desktop application.

C. Desktop Application

In addition to the embedded software, we cre-
ated a supporting desktop GUI application in
Python to fulfill the original software require-
ment. We called it ”MySynth”. As described in
our project proposal, this desktop app allows the
user to change the values of each module (just
the VCO in our demo), save/load ”.preset” files
containing these values, and swap between loaded
presets. The app relies on the pyserial Serial class
for sending and receiving information from the
STM32F072 microcontroller, and relies on the
Kivy GUI application development library, includ-
ing an official file dialog script [8] [6].

Fig. 11 shows the file dialog used for connecting
to the STM board. Once the user locates and
clicks on the STM’s port in this file dialog, the
app creates a new Serial object to handle serial
communication between the MySynth app and the
STM board [6].

Fig. 12 shows how the app appears after the
user has loaded a few presets. The user can click
a preset button in the sidebar to load those values
into the GUI, or close a loaded preset by clicking
the associated ”X” button. The app uses a separate
thread to periodically read the current value of
a module’s digital potentiometers via the STM
board. These values are then written to the GUI.
This means that the user can tweak a module’s
value using its physical encoder knob and see
that new value appear in the GUI. When the user

Fig. 11. File dialog in MySynth for connecting to an STM32F072
device

Fig. 12. Default appearance of MySynth app, with presets loaded

clicks into a module’s GUI text input, the ”reading
thread” pauses for a while, allowing them to enter
new values. When the user clicks the ”enter”
key, those new values are written to the module’s
digipots via the STM board, and the reading thread
resumes. In retrospect, I should have used one
set of text display widgets that the reading thread
updates with the current digipot values, and a
different set of text input widgets where the user
can enter their new module values. This would
have made the multi-threading cleaner because the
two threads would not have had to share access to



the same set of GUI widgets.

D. Integration
The only missing piece is the MIDI controller,

which is needed to send the CV to the VCO.
This allows a user to play recognizable notes on a
keyboard. We used an M-Audio Code 49 MIDI
Keyboard. We connected its USB-out port to a
laptop, and connected the laptop to our MIDI-
to-CV converter module, which we purchased
through 2HP. We used the free trial of Ableton
Live 10 to convert the MIDI-out information from
the keyboard into MIDI-in information that the
2HP module could parse. The module converted
the MIDI information to CV, and the CV out of
the 2HP module was then fed to the CV in of the
VCO.

III. PROJECT RESOURCES

A. Bill of Materials
• AD5144 digital potentiometers
• PEC12R rotary encoders
• Resistors, op-amps, capacitors, and other sim-

ilar electric components
• ARM Microcontroller
• Eurorack case
• MIDI controller (49-key M-Audio keyboard)
• MIDI-to-CV module
• CEM 3300 VCO chip
• LM13700 transconductance amplifier

B. Vendors
• DigiKey
• Adafruit
• Sweetwater

IV. DEMO DAY

We wanted to create something that was pre-
sentable and nice-looking. We decided to design
the PCB in a way that it could attach behind an
acrylic panel with only the core components stick-
ing out–in particular, the rotary encoders needed
to be accessible. As a result, we had to learn how
to use the laser printer to cut out a custom acrylic
panel to accommodate for the PCB on Demo Day.
Below is an image of the custom acrylic design
before going through the laser cutter:

The challenge with laser cutting the acrylic was
to get the precise measurements of everything

Fig. 13. Custom cut acrylic design for the PCB

involved in the design so the acrylic cover fit the
Eurorack case and the PCB just right. As shown
above, the acrylic has four box-like holes on the
four corners to accommodate for the attachment
to the Eurorack case. Additionally, the inner four
circular holes were for the PCB holes to go through
with a screw and nut. The boxes were cut to
allow the interactive components of the PCB to
be accessible during Demo Day.

On Demo Day, visitors to our booth could play
the piano and hear either the sawtooth wave or
the triangle wave output of the VCO–their choice!
They could fiddle with the rotary encoder or type
integer values into the desktop GUI to change the
sound of the music. They could save particular
sounds, and then load any previously saved sound
onto the synth in an instant. We had a great time
demoing our project for all of our visitors.



V. CONCLUSION

This synthesizer essentially fulfills the goals out-
lined in our project proposal; we generated an ana-
log signal to produce music, and we preserved the
convenience of a digital synth by allowing users
to save and load their favorite sounds. Though
we weren’t able to include as many modules as
we would have liked, we are satisfied with the
integration of our basic components and we are
proud of our synth. We created a unique and
scalable product that caters to a niche audience
within the world of music production.

VI. ACKNOWLEDGEMENTS

We appreciate Professor Brunvand and Professor
Stevens for helping us nuture this idea and bring
our project to fruition. We thank Dr. Rasmussen
for pointing us in the right direction for debugging
analog circuits. Dirk Lamb was Michelle’s team
partner for the Embedded Systems Design final
project, for which they built the digipot and rotary
encoder circuitry and the embedded code to go
with it. Dirk Lamb also showed the team how to
use Ableton Live, and for that we thank him [7]!

REFERENCES

[1] R. Wilson, Make: analog synthesizers. Sebastopol, CA: Maker
Media, 2014.

[2] SIMPLE 1v/oct OSCILLATOR, S. Battle, Ac-
cessed on: Sept. 26, 2019. [Online] Available:
https://www.lookmumnocomputer.com/projects/#/cem-
3340-diy-simple

[3] LM13700 Dual Operational Transconductance Amplifiers
With Linearizing Diodes and Buffers, Texas Instruments, Nov.
2015

[4] Quad Channel, 128-/256-Position, I2C/SPI, Nonvolatile Dig-
ital Potentiometer, Norwood, MA: Analog Devices, 2019

[5] PEC12R - 12 mm Incremental Encoder, Bourns Pro Audio
[6] FileChooser, Accessed on: Nov. 5, 2019. [Online] Available:

https://kivy.org/doc/stable/api-kivy.uix.filechooser.html
[7] Dirk Lamb, dirk.lamb31@gmail.com
[8] Short introduction, Accessed on:

Oct. 28, 2019. [Online] Available:
https://pyserial.readthedocs.io/en/latest/shortintro.html


