
AutoGrow

Xavier Humberg1, Yance Mooso2, Cody Ngo3

Abstract— In this document, a system for automatically
growing plants is proposed, and the results of building it are
exposed. This system automatically cares for the plants with
little external influence. The system includes three different,
confined systems, with each doing different, interconnected jobs.

I. INTRODUCTION

The world is becoming increasingly automated. There are
machines that will automatically play table tennis against
any opponent, machines that automatically assemble and
test cell phones, and even machines that automatically cook
hamburgers; however, there is one industry that has not
been fully automated: agriculture. Over the past century,
more and more jobs typically reserved for the farmer have
been industrially automated, like shucking corn or separating
wheat, but only a handful of people have attempted to
automate the more sensitive part of agriculture: caring for
the plants.

This project aims to create a prototype for that very pro-
cess. Though the prototype may not be 100% autonomous,
with enough industry experience, this prototype could eas-
ily be adapted to accept water and fertilizer from outside
sources, removing the necessity to refill the wells.

II. PROPOSAL

A. Design

The proposed system will be designed to grow plants with
little external help. It will be able sense moisture in the soil
and will provide water and fertilizer to a plant as needed. A
light fixture above the plants will be a substitute for sunlight.
Periodic checks will be required to make sure that when
plants grow, they do not touch the light fixture. These checks
will be done with a laser that will sweep the growing area
and if the laser breaks due to a plant, the light fixture will
be raised higher to accommodate the growing plant. If the
levels of either the fertilized water or regular water reaches
levels that are too low, an external notification in the form of
a light and email will be sent, indicating to the operator that
the well is in need of refilling. This will likely be the only
area where external assistance will be needed. Periodically
the system will collect data on the plants such as height and
will be sent to the user via email.

This paper was submitted for review on December 15th, 2017.
1Xavier Humberg is a Computer Engineering student at the University

of Utah, Salt Lake City, UT 84108 USE (e-mail: x@kuteradio.org)
2Yance Mooso is a Computer Engineering student at the University of

Utah, Salt Lake City, UT 84108 USE (e-mail: ymooso@gmail.com)
3Cody Ngo is a Computer Engineering student at the University of Utah,

Salt Lake City, UT 84108 USE (e-mail: u0831637@utah.edu)

Due to the nature of how the system will be designed, there
will be multiple components that will need to communicate
with each other to form a cohesive system. Each sub-system
will first be built and operated individually to make sure they
are working as intended before they are all combined.

B. Background

There are only a few commercially available products that
automate parts of the plant-care process. The most consumer
available is called an Aerogarden [1]. The Aerogarden is
typically a small, automatic gardening device that doesn’t
use soil, but instead uses a special pod sold only by the
manufacturer. There is a limited amount of space for seed
pods, and the light that comes attached to the system must
be manually adjusted to avoid having plants block it. The
system, as it isn’t fully autonomous, also reminds users
(using an app) to feed the plants and add water to the system.

The most interesting part about the Aerogarden is it’s
water system. It has specific profiles for each plant, and only
waters the plants when a tried and true method says so.

Another example of an automated system is FarmBot’s
“Drag and Drop Farming” [2]. FarmBot is a 3D-printer-
style machine that uses interchangeable heads and tools to
do almost every last part of the process – from planting seeds
and watering plants, to self-weeding its garden. This system
is geared towards a full-sized, raised, outdoor garden that
doesn’t provide its own lighting source. The system can be
controlled using an app – hence the “drag and drop” claim.

C. Tasks

The proposed system will consist of six different sub-
systems: a soil sensor system used to detect the moisture
in the soil, a watering system used to automatically water
the plants, a plant detection system used to automatically
detect when a plant is too close to a light source, a light
control system used to raise and lower the light source as
needed, a network system used to send data to an external
source, and a control system used to coordinate among and
communicate with each system.

The soil sensor system will consist of a soil sensor, a
driver, and a Zynq Board (Zybo)-Zynq 7000 Development
Board [3]. The driver has six output wires, two wires connect
to the soil sensor, one wire caries ground from the board, one
wire caries power from the board, and the remaining two
wires are used as communication lines between the board
and the sensor – likely as an analog to digital system.

The watering system will consist of a pump, electronically
controlled valves, a well (likely a bucket), a float sensor, and
tubes extending from the well to the soil. This system will be



Fig. 1. The first working prototype of the plant detection system

controlled by the Zybo-Zynq 7000 Development Board [3],
and will be directly triggered by a combination of timing
circuits and the soil sensor system, with some plants being
watered as soon as their soil reaches a certain threshold, and
others being watered after a small delay (depending on what
the plants need). These plants, and their respective profiles,
will initially be hard-coded into the system. The float sensor
will create an error code when the well empties to a certain
threshold.

The light system system will consist of two fluorescent
light units each with two T5 bulbs and a self contained ballast
packaged on a frame built out of extruded aluminum.

The plant detection system will be mounted on the light
system and will contain a laser scanner that upon an enable
signal from the controller will scan the plant bed area to
detect the height of the plants. When plants are detected due
to blocking the laser and sensor unit, it will send a signal
back to the main control system to raise the light system
and will rescan until plants are no longer detected. The
light system and plant detection system will be raised using
two stepper motors actuating two lead screws that the light
control system is mounted on using brass lead screw nuts
and two linear rails with guide shaft bearings mounted on the
frame next to the lead screw nuts. The plant detection system
will be controlled using an Arduino Uno [4]. The Arduino
Uno will also be used to raise the system using stepper
motors to rotate the lead screws using a microstepping driver.
The initial prototype of this system can be seen in Figure 1.

The network system will consist of a Particle Photon
Wifi Microcontroller [5], the Zybo-Zynq 7000 Development
Board [3], and possibly an external computer to receive
requests. This system will receive error codes from the
other components, which will be collected within the Zybo,
and will, at least initially, send an e-mail to a set of pre-
programmed addresses when something goes wrong.

The control system will consist solely of the Zybo-Zynq
7000 Development Board [3]. This system will control the
timing and communication among the different systems, and
will be in direct control of sending the error codes to the
network system.

D. Stretch Goals

Upon completion of the above mentioned system, we’d
like to extend into stretch goals. These goals extend into
two categories: creating an app and replacing driver boards.

Much like FarmBot [2] and Aerogarden [1], we’d like to
create an app for our system; though, this app wouldn’t be
nearly as complicated as FarmBot’s. This app would replace
e-mail alerts and offer a small amount of statistics tracking
by noting when the plants were watered, as well as the height
of the light.

We’d also like to replace the stepper drivers with those of
our own design. If we made it to this stage, we would create
custom circuit boards for the purposes of controlling the
stepper motors in our circuit. As there will be two different
stepper motors in use, we’d likely have to create two drivers
for different power ratings, though duty cycles will likely be
small enough that cooling shouldn’t be an issue.

E. Components

We will be using several purchased, prepackaged compo-
nents to make our subsystems and to comprise our full sys-
tem. A few of the components are subsystems in themselves
such as the stepper motor drivers and the fluorescent light
units. For the initial project we plan to use these pre-made,
purchased systems. If we have enough time, we would like
to replace the stepper drivers with our own designed driver
circuit and custom made PCB boards (See Stretch Goals for
more information).

F. Resources

We will be using three different development environments
to program each of our boards. The Zybo FPGA [3] will
be programmed using the Vivado Design Suite from Xil-
inx [6]. The Particle Photon [5] will be programmed using
its own web based IDE [7]. The Arduino Uno [4] will be
programmed using the Arduino IDE [8].

Many complex components are controlled by drivers or
from peripherals within the various microcontrollers. Please
see Stretch Goals for which components we’d like to try
replacing with custom-made components.

G. Task Interface

To coordinate our efforts and keep tabs on progress, we
will be using Basecamp as a task interface. We will focus
most of our use on the ”To Do” section, and will update the
information within the section regularly.

III. SPECIFICATIONS

A. Testing and Integration

Each sub-system will be tested individually. This will
ensure that when the sub-systems are combined, the complete



proposed system will work correctly and will assist in
correcting any problems found in each sub-system.

The soil sensor system will need to correctly detect the
moisture levels in the soil. This can be tested in a small soil
environment where varying amounts of water are poured into
the soil and the output is measured.

The water system will need to be able to deliver either
fertilized water or water to a given plant. Testing on this
system will ensure that only one type of water can be
delivered to a certain plant at a time. A test will also be done
to make sure that the specified type of water is delivered to
the correct plant location and to make sure that it is not
watered more than needed.

The plant detection system should report when a plant is
too close to the light. This can be tested by placing an object
that will interfere with the laser and seeing if the system
correctly reports that there is an interruption.

The light system must be able to raise its height when a
plant grows too close to the system. To test this system, the
stepper motors must be able to raise the light. From there,
this system can be combined with plant detection system so
that when it senses that a plant or object has triggered this
system, the light system will respond by raising the light.

The network system will send data to an external source
over the Internet. This system will be tested by first setting
up the Photon Wifi Microcontroller to send an email. From
there, additional tests can be conducted that will trigger an
email to be sent based on either a given stimulus or data
received externally.

The control system can only be tested once each sub-
system is working as intended. The control system will be
tested through the use of manual triggers on the Zybo-Zynq
7000 Development Board [3] that will trigger a response in
a given sub-system. The sub-system should then correctly
perform its intended operation. For example, pressing the
light system switch on the Zybo should send a signal to the
light sub-system to raise the light.

The test to see if the proposed system is working as
intended will be planting seeds and letting the system operate
on its own; thus, the plants should grow. Due to limited
time and resources, small and quick growing plants will be
selected such as herbs and beans. This will provide quick
and observable results to ensure that the system is operating
correctly.

B. Schedule and Milestones

We are aiming to get the plant detection and some light
control sub-systems designed and prototyped by the end of
April, with the rest of the light controller hardware, namely
the z-axis and overall frame, prototyped by the end of May.
We are also aiming at getting the full watering system
prototyped by the end of May, alongside having a solid un-
derstanding of the various sensors and each microcontroller.
From there, we’d like to create and solidify a communication
protocol for the boards by mid-June. By the end of June,
we’d like to get a full prototype of the network and control

systems. From there, we would move on to stretch goals and
design finalization.

Towards the beginning of the project, some milestones
will be accomplished individually so that each member will
learn about a component for each subsystem. This allows
for parallel learning of a component for time management.
Xavier Hummberg will be in charge of learning about the
Zybo, Cody Ngo will be in charge of learning about of the
Photon, and Yance Mooso will be in charge of learning about
the Arduino. By the end of May, each project member should
have a good understanding of how their component works.
The end of May should also see a prototyped version of
the light control system and watering system. Each project
member is also expected to learn about the soil moisture
sensor that will be a part of the watering system. These
milestones will be a team milestones as the scope is much
larger and a general understanding of the complete system
is beneficial for each team member when moving forward.

From the initial understanding and prototypes, the team
will be able to move forward to be able to create and
solidify a communication protocol among the boards of each
subsystem. This will be expected to be finished in the middle
of June. Once this protocol has been established, a full
prototype of the network and control systems is expected
for the end of the month.

The final prototype for the entire proposed system is set
for the end of July. This gives us time for the rest of summer
and fall semester to fix any issues or move onto stretch goals.

C. Risk Assessment

Though our project may seem rather simple upon first
glance, there is a surprising amount of risk involved in this
project. The main problem we’ll run into is the endstops on
the laser scanning system. They require a decent amount of
pressure to trigger, and can therefore desynchronize the laser
scanning system (this has happened a few times already). The
system will need to be perfectly synced to work in the way
we plan. If this proves to be a problem, we plan to either
swap out the endstops for another sensor or create a lever
system to decrease the necessary force.

We also, currently, haven’t found a good way to pump
water into our system. Though we could do a gravity fed, the
water flow-speed would vary based on the amount of water in
the well, and refilling the well could lead to pouring water to
the circuit. Many problems could also stem from improperly
sealing the tubing to the bottom of the bucket. However,
when it comes to pumps, most pumps we could purchase
for this project are too powerful for the purpose of gently
watering plants. This could lead to over-watering, drowning,
or even blasting away plants. There are a few alternative
methods to pumping water we could use if needed, including
using air pumps in an enclosed system, returning to a gravity
fed concept, and loop-back techniques for splitting tubes.

Also, there is an inherent danger working with water and
electronics. Though most systems will be kept above the
plant bed (and hopefully the watering system), systems could
still get easily ruined.



TABLE I
PARTS LIST (PART I)

QTY Part
As Needed V-Slot Linear Rail 20mm x 20mm extruded

aluminum
8 Delrin Mini V wheel

16 MR105ZZ 5mmx10mmx4mm bearings
4 F623ZZ Flange Bearing 3x10x4mm

As Needed eSUN 3mm PETG Natural Filament 1kg
As Needed Misc Nuts, Bolts, Washers

1 A4988 Stepper Motor Driver
1 TB6600 4A 9-42V Stepper Motor Driver

2 Units Yescom T5 2ft Grow Light
1 MSP432 Launchpad
1 Particle Photon Wifi Microcontroller
1 Arduino Uno Microcontroller
2 Zinc Alloy 8mm Inner Dia 55x13x30mm

Pillow Block Bearing
2 Aluminum 8mm Innner Dia 42x32x11mm

SK8 Linear Rod Rail Support Guide Shaft
Bearing

2 Aluminium Alloy D19L25 5x8mm Flexible
Shaft Coupling

2 8mm Inner Dia L34.5mm SCS8UU Linear
Bearing

2 8mm L500mm Linear Shaft Optical Axis
2 Stainless Steel and Brass L500mm D8mm

2mm Lead Screw Nut
2 Nema 23 CNC Stepper Motor 2.8A

1.26Nm(178.5oz.in) 23HS22-2804S
2 Nema 17 Bipolar Stepper Motor 3.5V 1A

13Ncm(18.4oz.in) 17HS08-1004S
48 in 1/4 in. x 48 in. Plain Steel Round Rod

A large portion of this project will involve 3D modeling
and printing. Some parts may be hard to build due to the
limitations of 3D printing, while others may just require a
large amount of work in a 3D modeling program. These are
skills that come with years of practice, but can easily be
created by somebody else if it becomes necessary. It seems
as though most of our issues are already resolved here, but
if parts break due to improper design, we may still need to
consult somebody.

The last main concern is in the strength of the Z-direction
stepper motor. Due to the sheer weight of the current light
fixtures, we will need a much more powerful motor than for
your x-direction scan. Currently, we’re hoping the Nema 23
stepper motors [9] we ordered will do the trick. If not, we
will have to create our own to keep the project within our
price range.

D. Parts list

A full parts list for this project can be seen in TABLES I
and II, and a full hardware and software list can be seen in
TABLE III.

IV. THE COMPLETED PROJECT

In the end, the system ended up being very similar to what
we had originally planned. A few decisions, such as using a
more professional board and removing the FPGA, were made
in the process that changed the direction of the project, but
none were significant enough to have a major impact on the

TABLE II
PARTS LIST (PART II)

QTY Part
8 250V 5A SPDT 1NO 1NC Momentary

Hinge Roller Lever Micro Switches 3 Pins
As Needed Crystal Clear Cell Cast Plexiglass Sheet

1 12v 30a Dc Universal Regulated Switching
Power Supply 360w

1 Solid State DC Relay
1 Spool Wire

1 Receptacle/Switch for 120v power
2 GT2 Pulley

2 Meters GT2 2mm pitch 6mm wide Timing Belt
As Needed wire heat shrink

4-8 Soil Moisture Sensors and Drivers
2 Float Sensors
1 Infrared Photoresistor

1 Pack Zip Ties
1 Water Pump

4-8 Water Solenoid Valve
6 Meters Vinyl Tubing

2 Water Tanks Reservoirs,Buckets,Containers
As Needed Various Electronic Components (Capacitors,

Resistors, LED’s/Diodes,Power Regulators,
etc...)

TABLE III
SOFTWARE AND HARDWARE

Software
Particle Web IDE (Build) [7]
Adobe Illustrator [10]
AutoDesk Fusion 360 [11]
Lulzbot Cura [12]
Lulzbot Taz 6 3D printer [13]

final product. In the end, our machine had taken a pepper
plant from seed to fruit, and we’re fully confident it will be
able to continue growing the pepper all the way through into
seed again.

Our final design consisted of three distinct, yet intercon-
nected pieces.

A. The Watering and Soil Sensing System

The watering system was left as proposed, except that it
was combined with the Sensor System since the two were
so interconnected. The only major difference in the system
was the use of an MSP432 instead of a Zybo, as we didn’t
need many of the benefits provided by digital circuitry in
the FPGA. The system still consisted of a bucket, a float
sensor, a pump, four solenoids, some tubing, four capacitive
soil sensors, and a custom PCB.

The soil sensors proved to be troublesome throughout the
semester. Several different resistive sensors were tested, and
each one proved unreliable. As of writing this paper, we’re
still yet to have an issue with the capacitive sensor after
installing it a month prior.

The PCB for the watering system (seen in Figures 2 and
3) was created to handle two pumps, each connected to
four solenoids, for a total of eight watering lines. The PCB
consisted of switch-transistors and a decoder meant to allow
only one plant to be watered at a time. This allowed us to



Fig. 2. A rendered version of the PCB for the watering system

precisely control the amount of water going into each plant,
without having to worry about pressure loss.

B. The Light and Detection System

The light system proved to be the most challenging part
of the project, from assembling all the moving pieces to
assuring the scanning system was always aligned, the bulk
of our project was spent working on this system. The first
prototype of the scanning system can be seen in Figure 1.
In this system, the steppers would pull the motor to the left,
which would activate the laser. The gantry would then scan,
keeping track of whether it lost contact with the light. If it
did, it would move up and scan again until it completed a
cycle without an interruption.

This method was far too slow and inefficient for plants
with curved leaves (like drooping corn, for example), so we
decided to have the system scan in both directions, and to
move up as soon as a break was detected. This allowed for
a scan to detect and fix a vast majority of the cases in the
first one or two passes. However, moving the light vertically
in the middle of scanning proved problematic due to the
laser going slightly askew when moving up. This gave us,
on more than one occasion, a false positive that forced the
light to raise to its maximum before the laser finally aligned
again.

To solve this problem, we switched from a laser to a clear
LED, as those have some of the directional properties of
lasers without the precision required by a laser detection
system. This led to one final problem: because we weren’t
using the laser, our light sensor had to be configured to a
point where the grow lights could trigger a false negative,
making the machine think that the plants never approached
the light. Our solution was to shut off the lights during
scanning.

That proved difficult as well, as now we had to wire the
120 V AC from the wall into our system and have our board
(which couldn’t exceed a 12 V input) be completely isolated.
We ended up using a solid state relay that the MSP432 was
capable of driving on its own.

Once scanning was set up, we installed limit switches at
the top and bottom of the movement system to ensure the
machine didn’t attempt to tear itself apart. The system was

Fig. 3. The wired up PCB for the watering system

designed to scan upon hitting the lower limit switch, and
turn off the light upon hitting the upper limit switch.

In the final version of the system, the light controller also
requested the current time from the network system and
ensured that the grow lights turned off between 8pm and
8am.

The gantry system also had a custom PCB (seen in figures
4 and 5) designed such that interfacing with the gantry
system was trivial. It contained all the necessary components
to wire the board to the stepper drivers, as well as the limit
switches, and contained some LEDs for debug information
if something went wrong.

Another custom PCB was created to allow easier control
over the stepper motors. In our project, the two vertical step-
per motors would always step in the same directions, while
our horizontal stepper motors would always be opposite. To
avoid having to control each of these motors individually,
we created a PCB that used jumpers to determine whether
parallel stepper motors would step in the same direction, or
in opposing ones. This can be seen in Figure 6

C. The Network System

The network system was implemented as was proposed.
Emails were sent to the user based on messages received



Fig. 4. A rendered version of the PCB for the gantry system

Fig. 5. The hooked up gantry controller

Fig. 6. The parallel stepper splitter PCB

from the other systems, such as when a plant was watered
and if the water for the watering system needed to be refilled.
As an additional feature, an email is sent at the end of each
week that includes different information about the system
such as how many times a plant was watered.

In addition to emailing the user about the status of the
system, the network system was used as a real-time clock
that helped in notifying when certain events occurred as well
as triggering different events based on the time of day. An
example of this kind of event is using the time of day to
have the lights for the plants switch between on or off. The
Particle Photon acquires this time from the Particle Cloud
servers once it connects to the internet. As long as the Photon
has access to a WiFi network, the time is able to be retrieved.

Communication between the MSP432 and the Particle
Photon was achieved using a UART serial connection be-
tween the two devices. Integers representing different events
were sent from the MSP432 to the Photon and were then
processed to be able to send an email. In the opposite
direction, time was sent from the Photon in 4 digits that
the MSP432 had to process to be able to used for different
functions.

D. Connecting Everything Together

As can be seen in Figure 7, almost all of our routing
was done inside a box that was mounted to the back of the
project frame. The box contained our 12 V power source, 5
V power source, solid state relay, custom watering system
PCB, custom gantry system PCB, stepper motors, and power
switch.

E. Demoing

Due to the slow growing nature of plants, a series of time
lapse videos were made of the project prior to demo day.
The videos showed various angles of the project over a 5-
10 days period, each showing project behaviors like plants
sprouting and growing, plants being watered, the light system
raising as needed, and the light system turning on and off
throughout the day. Corn was used as demo plants for its fast
growing abilities that led to interesting time lapse videos.
The videos were made by using a Raspberry Pi 3 connected
to a camera that took a photo every 5 minutes over 5-10
days each. The videos were compiled as an FFMPEG at 30
frames per second. The videos were played during demo



Fig. 7. The innards of the box that wires everything together

Fig. 8. The completed project including a timelapse

day on a monitor. To show individual functionality of the
different subsystems of the project on demo day, an override
controller was designed and built. The controller consisted
of 4 momentary push buttons and two switches. The top
left button was used to raise the gantry until the button
was released, at which point the scanning system activated
and scanned the current level to determine if it was safe
for the plants. The middle-top button is pressed to tell the
scanning system to find the top of the plants and positions
the light gantry at a safe distance. The right button moves
the gantry down and scans. The bottom two switches are
used to represent 4 possible plant designations when using
the momentary button on the bottom to selectively water a
single plant for 20 seconds.

Despite being designed for demo day purposes, the over-

Fig. 9. Override control

Fig. 10. A test of using a snoot to restrict light pollution produced by the
grow light on the plant scanning system

ride controller turned out to be a very useful device for day
to day operation of the system.The override controller can
be seen in Figure 9.

F. Risk Management

The potential risks outlined earlier in this paper discusses
possible problems with the laser scanning system, the water-
ing system, 3d printing, and the strength of the z-axis. These
risks were alleviated with careful design and engineering
practice.

The use of a laser diode on this system, coupled with a
photo-sensor ended up being an issue.The laser ended up
being too precise, resulting in false reads due to jitter in the
device. We looked into using an IR emitter and IR sensor. We
determined that IR had too much potential risk in false reads
due to IR signals bouncing off of different surfaces. The
method we decided on, was to directly replace the laser with
a bright white LED that shined directly across the light to
the photo-sensor. This lead to a problem with light pollution
from the main grow light causing the sensor to never detect a
break in the LED light. The first solution was to create a light
snoot that restricted the angle at which light can enter the
photo-sensor chamber(Figure 9), this still seemed risking so
we solving this issue by having the grow light shut off before
scanning and then turning on after the scan if permitted by
the current time settings.

We were initially concerned with having high voltage
electronics around water. This ended up not being an issue
because all of the electronics were positioned higher up on
the project, the watering system didn’t have any leaking
issues, and the plants were inside of a run off container for



collecting excess water for initial testing.
The 3D printed components on the project ended up being

more than adequate for what they were needed for. There was
very little stress on the components, laser cut acrylic was
used where ever possible for ease of fabrication, strength
and cost.

There was a concern about the strength of the Z-axis
motors for lifting a heavy light system. We tried to avoid
this issue by keeping the lighting and scanning system as
light as possible, as well as having tight tolerances on the
project frame to keep the lead screws straight and parallel.
The smaller NEMA17 motors worked alright, but we ended
up using larger and more powerful NEMA23 motors that are
more than enough for their application.

V. SUMMARY

In this paper, we proposed a system that was designed to
grow plants with little external help. This was accomplished
by combining multiple systems together, each in charge of a
specific task such that one could not interfere with another.
We worked through summer semester to complete most of
the project, with fall being dedicated to bug fixing and
software. Our milestones were much loftier, so we were
unable to get the full prototype in the summer.

Management of team responsibilities and communication
was made easier through the use of Basecamp, which allowed
us report on our contributions to the final product as well
as discussing the current state of the project. Overall, we
learned many things about developing continuous systems, as
well as several good wire wrapping, connecting, and routing
procedures (thanks Yance!).

REFERENCES

[1] AeroGarden, https://www.aerogarden.com/, Miracle Grow, accessed:
2017-03-23.

[2] FarmBot, Open-Source CNC Farming, http://farmbot.io, accessed:
2017-03-23.

[3] Zybo Zynq-7000 ARM/FPGA SoC Trainer Board, Digilent Incorpo-
rated, 2 2017, rev. B.

[4] Arduino Uno, https://www.arduino.cc/en/main/arduinoBoardUno, Ar-
duino, 2014.

[5] Photon, Particle, 2016, v014.
[6] Vivado Design Suite, Xilinx, 2016, version 2016.4.
[7] Particle Web IDE (Build), https://www.particle.io/products/

development-tools/particle-web-ide, Particle, 2016.
[8] Arduino IDE, Arduino, 2016, version 1.8.2.
[9] Stepper online. [Online]. Avail-

able: http://www.omc-stepperonline.com/
nema-23-cnc-stepper-motor-28a-126nm1785ozin-23hs222804s-p-108.
html

[10] Adobe illustrator. [Online]. Available: http://www.adobe.com/
products/illustrator.html?sdid=KKQML&kw=tgcontrol&mv=search&
s kwcid=AL!3085!3!155829415155!e!!g!!adobe%20illustrator&
ef id=WP@MiAAAADuVJDlG:20170425185614:s

[11] Autodesk fusion 360. [Online]. Available: https://www.autodesk.com/
products/fusion-360/overview

[12] Lulzbot cura. [Online]. Available: https://www.lulzbot.com/cura
[13] Lulzbot taz 6 3d printer. [Online]. Available: https://www.lulzbot.

com/store/printers/lulzbot-taz-6


