
Autonomous Drone

Joseph Helland, Jesse Whitaker, Patrick Cowan, Scott Glass
Dept. of Electrical and Computer Engineering, University of Utah

Abstract—For our senior project we modified a quad-
copter so that it can fly autonomously and land whenever
a camera detects a red target. The quadcopter uses
four infrared sensors to avoid obstacles and an off-board
camera to detect targets. Whenever the camera sees a red
target, it tells the quadcopter to land. Our project was
mostly successful; we were not able to attach the camera
to the quadcopter due to I/O issues, but we were able to
have it fly around a room while avoiding walls.

I. INTRODUCTION

For our senior project we modified a quadcopter so
that it could fly around autonomously and land whenever
an off-board camera sees a red target. We used three
infrared sensors to avoid obstacles and one to control
altitude. We used a small camera module to communicate
images to a computer and OpenCV software to analyze
the images for the color red. If the image was a match,
the computer would send a signal to the quadcopter
telling it to land.

The original idea for our senior project was to have
the camera on board the copter so that it could identify
objects without the help of a computer. Due to I/O issues,
we were not able to attach the camera module directly to
the copter (see the difficulties section for more explana-
tion on this). However, we were able to demonstrate these
two aspects separately. We demonstrated the project by
having the quadcopter fly around an empty hallway with
the camera module connected to a computer. Whenever
we put the color red in front of the camera module, the
copter would land successfully. see figure 1 for a diagram
of all the project components and how they interact.

The idea for this project came from reading an article
about colony collapse disorder (CCD). CCD is a myste-
rious phenomenon responsible for the deaths of as much
as 30 – 90 % of adult honey bees within a colony. The
effects of CCD could be economically disastrous because
about 130 agricultural plants in the United States are
dependent on honeybee pollination (valued at about $15
billion annually) [1]. We think our autonomous drone

Fig. 1: Overview of project.

could be a great solution for CCD. The central computer
could use an algorithm to recognize plants that need
pollinating and direct the drone to the targets. CCD is
just one example of where an autonomous drone could
be useful. Other good examples include finding survivors
after a natural disaster, performing reconnaissance in a
military situation, or tracking animals for hunters.

II. BACKGROUND

An autonomous drone is not a particularly new or rev-
olutionary concept. The military has been using drones
for the past several decades and some companies even
sell drones as toys such as the AR Drone 2.0 by Parrot,
the FPV X4 Mini RTF Quadcopter by Hubsan, and the
Phantom Aerial UAV Drone Quadcopter by DJI. Even
Amazon has been doing research on using drones as
a delivery system for packages. Although our project
is not completely original, the aspect that sets it apart
from all these other drones is scale. To date, no one
has implemented a completely autonomous quadcopter as
small as the CrazyFlie (which weighs only 27 grams and
is as big as the palm of your hand). The closest product
we could find to this is called the Zano and weighs 55
grams.

Fig. 2: Picture of the CrazyFlie 2.0 quadcopter [4].

III. HARDWARE

A. Quadcopter

We briefly considered making our own quadcopter for
this project but quickly decided against it. Due to time
constraints and the complexity of flight, we thought that
making both a quadcopter and making it autonomous
would be unrealistic. We even found a senior project
from 2013 who attempted to create a quadcopter and
it proved to be a huge amount of work [2].

Fortunately, we were able to find a quadcopter that
was perfect for our purposes: the CrazyFlie 2.0 by
Bitcraze (see Fig. 2). This quadcopter uses both open
source hardware and software, making it an optimal
platform to host our modifications. The CrazyFlie also
provides a number of other useful features such as on-
line documentation, a radio module and communication
protocol, easy flashing via radio, and some basic flight
code. The tiny quadcopter is also surprisingly powerful,
with 168MHz Cortex-M4 micro controller (MCU) with
192kb of SRAM and 1Mb of flash memory [3]. The
CrazyFlies MCU comes preloaded with some basic flight
code. It basically uses stabilization algorithms to point
the quadcopter forward and keep it somewhat level. The
CrazyFlie also comes with code to interface with the
radio and manage power usage.

B. Proximity Sensors

Both infrared and ultrasonic sensors were considered
for collision avoidance. With the tiny payload available
on the CrazyFlie 2.0, ultrasonic sensors proved to be too
heavy. Sharp builds a infrared sensor module that weighs
very little and functions as low a 2.7 volts. This sensor

Fig. 3: Picture infrared module used [5].

Fig. 4: Picture of the CrazyFlie 2.0 quadcopter with
sensors.

was used to show proof of concept with a quick way to
build it.

Four of these sensors were added to the CrazyFlie.
One facing down to help with altitude hold. One forward,
one left, and one right allow avoidance. The flight
stability was not as good as originally anticipated and
the rear blind spot allowed a lot of collisions. The rear
sensor was not included to save I/O for the camera. Many

Fig. 5: Sensor blind spots.

collisions also occurred at the corners. Because of the
erratic flight, a wider seeing sensor might have performed
better and a rear facing sensor is needed (see Fig. 5).
The original idea, rotating from a fixed position before
making decisions on movement, didn’t work. Overall, the
goal for the sensors and object avoidance was met, but
a custom PCB that incorporates all sensors would save
weight and allow a more compact and stable setting for
the sensors. There is a lot of room for improvement.

C. Camera

For giving the quadcopter vision, we used the
OV9655 image sensor. WaveShare manufactures a pro-
totype board for this sensor that we used to interface
with the camera. The main advantages of this camera
is it is built for low-power mobile applications. The
camera operates on between 1.7 and 3.3 volts and the
camera is only a few centimeters across [6]. The largest
disadvantages of this camera is the IO that is required to
operate it. Aside from the lines providing the necessary
voltage, the camera has two lines for the serial camera
control bus (SCCB) interface, three lines for timing
information, one line for an external clock that must be
no less than 10 MHz, and an additional 8 lines for the
actual pixel data. The camera requires an 14 additional
IO lines to communicate with the camera. To solve this
IO issue, we used an additional MCU to interface with
the camera.

D. Prototyping Board

For developing the interface between the camera and
the quadcopter, we decided to use the STM32F407VG

Fig. 6: OV9655 sensor on WaveShare board [7].

Fig. 7: STM32F407VG Discovery Board [8].

Discovery Board. This development board uses a 407VG
cortex M4 processor which is in the same family as
the processor on the quadcopter. However, unlike the
405 processor on the quadcopter, the 407VG has a
digital camera interface (DCMI) module that allows us to
capture image data without processor intervention. The
407VG also contains 192 Kbytes of RAM, allowing it to
store images without the use of external memory. This
prototyping board also has I2C and USART support,
allowing it to communicate with both the camera and
computer that controls when the quadcopter lands.

IV. INTERFACES

All of the proximity sensors communicate with the
MCU via analog to digital converters (ADC). The camera
needs a total of 14 IO pins to operate. two of them
control the camera itself, doing functions such as telling
it when to take a picture. The other 12 IO pins are

for transferring data. Due to how many IO pins this
camera requires, we were unable to attach it directly
to the quadcopter. Instead, we had the camera com-
municate with an STMicroelectronics discovery board
which then communicated with the central computer. The
camera communicates with the discovery board using
two protocols: a proprietary SCCB format for setting
up the cameras registers and the digital camera image
(DCIM) format for transferring pixel data. The discovery
board MCU will periodically transfers camera data to the
central computer application through a UART interface.
The central computer issues commands to the quadcopter
using a 2 GHz USB radio dongle and a custom radio
protocol developed by BitCraze.

V. SOFTWARE

A. Collision Avoidance

We tried many different approaches to writing the
collision avoidance firmware, but what worked best is
the function shown in figure 8. This function takes in
a proximity sensor reading as a parameter and returns
a desired pitch or roll value. The x-axis shows the
value returned from the proximity sensor; high numbers
indicate the object is close. The y-axis shows what we
want to set our pitch to; negative pitch indicates the
the copter is tilted forward. If the copter does not see
anything, it very slightly tilts forward at 7.5 degrees. As
the copter approaches an obstacle, it slowly evens out
and when it reaches about 1300, our collision threshold,
the copter should be completely level. Once the copter
moves past the collision threshold, it reacts extremely
quickly due to the quadratic nature of the curve.

The biggest disadvantage of the approach shown in
figure 8 is the quadcopters tendency to overcompensate
for collisions. What would happen is the quadcopter
avoids the walls just fine, but it would go so far back-
wards that it would run into the opposite wall backwards.
We tried to compensate for this by incorporating a veloc-
ity component into the code. We would estimate velocity
by polling the proximity sensors every .05 seconds and
subtracting the previous reading from the current reading.
If we detected that the last several velocity calculations
were negative and above a certain speed, we would set
the pitch forward to try to compensate. This approach had
mixed success. It seemed like it helped some of the time,
but the velocity readings were not consistent enough to
help eliminate the overcompensation problem entirely.

Fig. 8: Function mapping proximity values to its corre-
sponding thrust.

B. Thrust Control

The quadcopters thrust control works using the state
machine shown in figure 9. The quadcopter starts in the
liftoff state, the point of which is to simply get off the
ground. Thrust is set to a constant value for one second,
after which it hands off to the steady state. The purpose
of the steady state is to try to keep the copter at a constant
altitude. The code to do this is surprisingly simple. What
the code does is query the downward facing proximity
sensor for a reading. If the reading is above a certain
threshold, we subtract a bit from the current thrust. If we
are below the threshold, we add a little bit to the current
thrust. This scheme forms a feedback loop in which the
copter is constantly adjusting thrust to try to reach the
threshold value. A huge advantage of this approach is
that the quadcopter automatically adjusts for different
battery levels. Once the camera has spotted a target, the
copter enters the landing phase. The landing phase is
very similar to the liftoff phase, except the thrust is set
to a much lower value. Once the copter has set on the
ground for about three seconds, it goes back into the
takeoff phase and the cycle repeats.

The thrust control program also helps a bit with the
collision avoidance. If the sensors detect a collision and
we are tilted away from the obstacle, we add some thrust
to compensate. This gives the copter extra power when
it tries to move away from a wall.

C. Client Modifications

We did not make many modifications to the client. In
the GUI in figure 10, the changes we made were adding

Fig. 9: Diagram of the thrust control scheme.

Fig. 10: Diagram of the thrust control scheme.

the ABORT button and the Auto Pilot check box at the
top of the screen. We also added a thread to the client
that constantly runs the camera and queries the computer
vision program. If the computer vision program reports
a match, we send a landing signal to the quadcopter.

D. Camera Firmware

We built the camera firmware using multiple open
source projects as a starting point. Through experimen-
tation and testing, we found the only reliable way to
capture camera data was through the DCMI. All other
attempts at interfacing with the camera through GPIO
would fail due to varying reasons. Our final firmware
implementation allowed the computer to send a message
over a virtual serial port to notify the development board
to capture another image from the camera. After the
DCMI finishes capturing a new image from the camera,

it uses the virtual serial port to transmit the entire image
buffer back to the computer for decoding and processing.

E. Camera Software

We built camera software on the main computer
to handle the encoded image data that was sent back
from the prototyping board. The application is written
in python and utilized the TK GUI framework built
into python. We also used 3rd-party libraries for serial
communication and image processing. The application is
capable of communicating with the prototyping board to
capture encoded image data. The application will then
decode and save the image before displaying it in the
UI.

F. Computer Vision

The computer vision portion of our program was
written using an open source library called OpenCV.
The program was written in java and was run from the
command line. It takes two arguments: the picture we
want analyzed and a template of the target we want. The
program would use the OpenCV libraries to compare the
template image to every part of the camera image and
find the portion of the image that matches the template
best. OpenCV returns a number that indicates how good
of a match it has found. If the returned number is above a
certain threshold, then we would print a 1 to the console
indicating the image is a match. If the image was not a
match it prints a 0.

VI. DIFFICULTIES

It turns out that flight, quadcopters, and cameras
are more complicated than we expected! This section
describes what went wrong when developing this project
and how compensated.

• Stability - The biggest problem developing for
such a tiny quadcopter is stability. It is so small
that whenever the quadcopter slightly tilts it
builds up a ton of speed very fast. We compen-
sated for this by having the quadcopter react very
severely whenever a collision is detected. We
had decent success doing this, but it is unlikely
we could get it working perfectly without more
sensors or a bigger quadcopter.

• Proximity sensor inaccuracies - Every once in
awhile the proximity sensors would produce
strangely inaccurate readings. We compensated

for this by taking the average of multiple sensor
readings and removing any outliers.

• Battery level - The quadcopter is surprisingly
sensitive to battery level. After about 30 seconds
of flight, the quadcopter becomes so inaccurate
that it is basically unusable. We tried various
schemes to try to account for this but none
were successful. For this reason we restricted
our demonstrations to about 30 seconds before
switching and recharging batteries.

• Gyroscope glitches - Every once in awhile the
quadcopters gyroscope would become stuck in a
state where it thinks that up is down and down
is up. If this happens during flight, it causes the
quadcopter to do a flip. We never did find the
reason for this, but thankfully it happened rarely
enough that we could ignore it.

• Client freezes - Sometimes when we tried to con-
trol the quadcopter the client application would
become completely unresponsive. We could con-
nect fine and we even got battery logging infor-
mation, but the quadcopter would not respond to
any of our commands. This problem happened
rarely when we first started developing for this
project, but it happened more frequently the
closer we got to demo day. About a week before
demo day, it got so bad that only about one
in fifteen connections to the quadcopter were
successful. We suspected it might have something
to do with the laptop we ran the client from, so
we switched over to a different one. This seemed
to fix it at first, but the problem popped up again
a few times since then. We still have not found
the cause for this.

• Inconsistent thrust - Nine out of ten times the
thrust control works perfectly, but occasionally
the thrust jumps way too high and the quadcopter
flies straight into the ceiling. This problem is
probably related to the battery issue described
above. We compensated for this by making the
steady state adjustment lopsided. If the quad-
copter is below the target altitude, it only adds a
little to the thrust, but if the quadcopter is above
the target altitude, it subtracts a lot from the
thrust. This makes it so the copter occasionally
dips below the target altitude, but it almost never
goes above it.

• Balance - The quadcopters performance is hugely

affected by how the battery is positioned on
copter. If it is slightly too far forward or back-
wards it crashes into the walls. We compensated
for this mostly through trial and error. If a run
goes really badly we would keep adjusting the
battery position until it seems normal.

• Sensor blind spots - We developed this quad-
copter assuming that we would have camera
on board. As a result, we used the minimum
amount of GPIO for the proximity sensors. Be-
cause of this, our quadcopter has several blind
spots mainly in the corners and on the back.
These blind spots used to be one of the biggest
causes for crashes. We compensated for this by
programming the quadcopter to slowly turn as it
is flying. The rationale for this is that it minimizes
the amount of time any blind spot exists. In other
words, the blind spot changes position through
turning before it has a chance to become a
problem. The solution was very effective, as it
seemed to greatly reduce the number of crashes
due to blind spots.

• Camera interfacing - We encountered numer-
ous issues when building our camera interface.
Throughout the semester, we attempted to inter-
face with the camera over GPIO since our origi-
nal goal was to put the camera on quadcopter. All
of our attempts to use the GPIO directly to drive
the camera would end with an issue that could
not be solved. Typically, these issues would be
caused by lack of IO. One example would be
that we needed to generate a clock for driving
the camera at a proper speed; however, due to
the IO constraints of the quadcopter, we could
not do this and keep the I2C interface needed to
communicate with the camera. Ultimately , we
scrapped the idea of putting the camera on the
quadcopter and instead opted to use the DCMI
on the discovery board.

• Image data corruption - After solving the in-
terfacing issue, we ran into a very strange im-
age corruption issue. When the camera captured
images with too much color, the pixel data
would suddenly become misaligned. After a large
amount of troubleshooting various portions of the
camera interface, we found the issue was being
caused by our python application. For debugging
purposes, we wrote the encoded serial data out

to hex file and compared the image information
to data captured using an oscilloscope. At some
point when python writes the image data out and
reads it back in to decode the image, it becomes
corrupted. Removing the file IO code from the
python application solved the issue.

• Computer Vision Integration - When working to
combine all of the teams work into one cohesive
project, we ran into issues with the OpenCV
libraries. Since OpenCV uses its own optimized
version of the C++ libraries, we encountered
issues getting the project to link on any machine
other than the machine the application was devel-
oped on. To solve this issue, we ultimately used
the Python Imaging Library to replicate most of
the functionality. Unfortunately, this process lost
some of the more sophisticated algorithms that
were being used in the Java application; however,
we were able to detect colors and properly com-
municate with the quadcopter to tell it to land,
allowing us to demonstrate a functioning project.

VII. CONCLUSION

Our project works fairly well all things considered.
The biggest problem is battery life; we can only let it
fly for maybe 30 to 40 seconds before it starts running
into walls. Flight is so complicated that it is extremely
unlikely we could get it working perfectly without more
sensors and way more development time. Despite our
difficulties, it was still a pretty fun project to work on.
We crashed the quadcopter probably more than 200 times
during development, so it is surprising the thing still flies
at all. There is plenty of room for improvement, but we
are happy with what we accomplished.

ACKNOWLEDGMENTS

Much thanks to Ken Stevens for his help throughout
the semester. Thanks to John M. Hollerbach and Daman
Bareiss for helping us get access to the Large Robotics
Lab. Thanks to Jon Davies for giving us advice and extra
components.

REFERENCES

[1] Chelsea Gifford, “Colony Collapse Disorder, The Vanishing
Honeybee (Apis Mellifera),” Ph.D. dissertation, University of
Colorado at Boulder, 2011.

[2] Leif Andersen, Daniel Blakemore, Jon Parker, “Project Levi-
tate,” Dec. 2012, University of Utah Senior Project Report.

[3] Crazyflie 2.0 hardware specification,
Bitcraze, 2014. [Online]. Available:
http://wiki.bitcraze.se/projects:crazyflie2:hardware:specification

[4] CrazyFlie 2.0 Product Description, Seeed, 2014. [On-
line]. Available: http://www.seeedstudio.com/depot/Crazyflie-
20-p-2103.html

[5] Sharp, Sharp GP2Y0E03 Datasheet.
[6] OV9655 Product Specification, OmniVision, 2015. [On-

line]. Available: http://electricstuff.co.uk/OV9655-datasheet-
annotated.pdf

[7] WaveShare OV9655 Camera Board, WaveShare, 2015.
[Online]. Available: http://www.waveshare.com/ov9655-camera-
board.htm

[8] EleckTrics, STM32F4 Discovery Board, 2015.
[Online]. Available: http://www.elektricks.net/Wp-
Content/Uploads/2015/02/STM32F4-Discovery.jpg

[9] P. Cowan, University of Utah Project Deathray, May 2015.
[Online]. Available: http://deathray.patcowan.com

