
1

Autonomous Sailing Across the Great Salt Lake
Kyle Lemmon, Ted Goodell, Jim Squire, Bashar Al-Habash

Abstract—Robust autonomous ships provide a cheap and
efficient approach for applications such as exploring hazardous
waters that are unsafe for manned travel, mapping out vast areas
of water using sensors, and providing autonomous transportation
across water in a similar fashion to having autonomous vehicles
travel roads. Our project sets to explore this technology by
building an unmanned autonomous boat with a self-sustaining
power source that will be able to operate for an undetermined
period. Our goal is to have the ship be able to autonomously
navigate across the Great Salt Lake in Utah.

I. INTRODUCTION

One of the greatest benefits to humanity provided by com-
puter technology is automation. Using computers to automate
tasks normally done by humans has saved large sums of money
and human lives. However, there are some jobs that are much
more difficult to automate because they require software that
can handle natural and uncontrolled environments with many
variables to process. The area where this has generated the
most interest is the automation of vehicles like automobiles
and watercraft.

Interest in developing autonomous vessels for crossing
oceans and other large bodies of water has recently increased
in a similar fashion to interest in creating autonomous au-
tomobiles. Convenience and safety provided by autonomous
automobiles are undoubtedly a main driving force for many re-
searchers and global companies to perfect this technology. The
differences between autonomous automobiles and autonomous
vessels might not seem significant at first glance. However,
when considering the different risks, safety measures, engi-
neering, and computing needs of these two technologies, they
begin to seem anything but similar.

Currently, a major key of the advancement by automobile
companies, such as Tesla and Google, is having well-defined
set of road regulation for the vehicles to follow. In contrast,
water craft navigation rules are limited which creates safety
concerns for automating them. With safety as a priority, we
aim to develop an autonomous ship that will neither risk the
safety of other ships, nor require the presence of an operator
on-board. This will be accomplished by creating a 7 foot long,
fully autonomous and self-sustained ship that will aid in the
research and advancement of this evolving technology. This
idea, inspired by the Microtransat competition that is later
outlined in Section II, will help enlighten the feasibility and
challenges of making human operated vessels obsolete.

While the Microtransat challenge focuses on boats crossing
the Atlantic ocean, our focus will be to design and implement
a ship that will integrate a few widely used and trusted

Manuscript received December 16, 2020
K, Lemmon, E Goodell, B. Al-Habash and J. Squire are Computer Engi-

neering students at the University of Utah.

technologies to cross the Great Salt Lake autonomously. Our
ship will consist of our own fabricated hull, solar panels and
batteries for power and an SoC board running Linux. The
software we write for the board will take data from a GPS
and other sensors and give commands to a rudder and drive
motors to autonomously navigate to different pre-programmed
waypoints on the lake.

In order to create our autonomous ship, we need to make
sure that is fully mono-stable, and able to withstand the waves
of The Great Salt Lake. The ship will have a waterproof
compartment that will contain all of our electrical components,
in order to prevent any water damage if the ship were to
be submerged under water. Furthermore, the ship will have
an easily accessible safety emergency stop button that will
immediately shut down the motor and all other electrical
components, reducing the risk of an accident during and after
the our fabrication process.

For our systems software requirements, the ship will arith-
metically navigate its course autonomously. To accomplish
this, the ship is going track its own location and log it.
This means that information such as, geographical location,
velocity, and heading, will be continuously reported by the
ship throughout its journey and then used by our, on-board,
route algorithm to produce control commands to the hardware.
The ship will also be equipped with an IP interface that allows
for control commands to be issued by an external user and then
executed by the ship remotely, over a local WiFi network as
well as a terrestrial radio network. A dedicated web server and
interface will be implemented to keep track of the information
logged by the ship and to issue any external control commands.
As we discuss later on in our stretch goals, we will adding
interactive features to the web interface if time permits.

For our electrical requirements, we need a continuous power
supply to the ship during its journey. Using rechargeable
batteries and solar panels that are placed on top of the ship,
the power will be independently supplied to the ship. During
the night and when there is low direct sun contact to the solar
panels, the ship is going to prioritize keeping the electronics
powered on and not running the motor. To further conserve
power, the ship will also turn off the motors when being drifter
by the water along the desired route. Moreover, to comply with
the maritime law, the ship’s parameters will have white, red
and green LED’s to indicate its heading for other sea vessels.
The white LED’s will be placed along the stern, and red LED’s
along the port side, and green LED’s along the starboard side
of the boat.

There are more features that will help reduce risk of losing
the ship throughout its journey and improve its performance,
but depending on our progress speed and time limitations we
are categorizing the following as time-permitting stretch goals:

• implementations of floating/stationary object sensors with



2

a collision detection and rerouting algorithm
• shallow water avoidance algorithm
• a dedicated web-server for the ship to issue real-time

control commands and display status and images from
a camera

• a total power loss recovery system
• allowing the IP interface to be usable over satellite radio

II. BACKGROUND

Autonomous water crafts for different purposes and with
different designs are being developed all around the world.
Finland demonstrated a fully autonomous ferry in 2018 that
traveled between Parainen and Nauvo [1]. Meanwhile, Norway
is exploring creating autonomous container ships [1]. Other
uses for autonomous ships include being able to map out large
sections of the ocean or other bodies of water [2]. Autonomous
ships can also be used as a method of garbage collection to
clean the oceans. Potential benefits for autonomous watercraft
include lower overall costs, increased safety, and being able
to send ships to travel dangerous waters [2].

Microtransat is a competition that aims to stimulate this
development by challenging teams to build small autonomous
boats (maximum length of 2.4 meters) that can cross the
Atlantic Ocean [3], and is the source behind our initial interest.
This challenge was originally conceived in 2005 by Dr. Mark
Neal of Aberystwyth University and Dr. Yves Briere of ISAE
and was first attempted in 2010 by the Pinta developed
by Aberystwyth University [4]. To date there have been 30
attempts, with only one of these (the SB MET engineered by
Sailbuoy) successfully completing the voyage on the 26th of
August in 2018 after traveling for almost 80 days [4].

There is great risk associated with crossing the Atlantic
Ocean. Many Microtransat participants lost their autonomous
ship by getting stuck in a fishing net, or by being picked up
and taken by civilians and fishing ships [4]. This information,
combined with the cost of travel for an Atlantic voyage, drove
us attempt to cross the Great Salt Lake instead. Our ultimate
purpose is not to win the Microtransat competition, but to
create an interesting demonstration of what we have learned
in our time as Computer Engineering students at the University
of Utah.

III. VESSEL SOFTWARE AND HARDWARE DESIGN

A. Software Implementation

The system primarily consists of four software components
each with a well defined scope, and firmly defined software in-
terfaces. Software development is done against a well defined
API, such that tests can be written prior to completion, and
each component can be tested individually, with the interaction
of other components able to be simulated. For the sake of
simplicity and readability, each software component that is
onboard the boat is named after the member of a ship’s crew
that would be responsible for carrying out the assigned tasks,
were this a staffed ship as shown in Fig. 1.

The Linux based system run on the SOC uses a version of
Debian Linux compiled for the SOC and board. Interfacing
with off-board components was done through a combination

Fig. 1. Software component layout.

of file-mapped GPIO, PWM, memory-mapped I2C, UNIX
sockets, and external software.

Our software was developed first by using header files
to plan our high level component interfaces. This helped
greatly when dividing the work, as the interfaces were well
documented and implementation details were not necessary to
design compatible software.

1) Engineer: The Engineer is responsible for interfacing
with all hardware, including reading and tracking sensor
values, and setting values for servos, actuators, and motors.
Specifically these peripherals include the navigation light,
bilge pump, rudder servo, thruster motor controllers, water
sensor, magnetometer, accelerometer, charge controller, and
GPS. The bilge pump control, navigation light, and water
sensor all rely on simple GPIO to operate. The programming
interface to the GPIO on the BealgeBone was provided through
a library made by a GitHub user named Shabaz[5].

The accelerometer and magnetometer were connected using
I2C and relied on the same aforementioned GPIO library. The
code for the magnetometer not only retrieved sensor readings
but also applied configuration data to its internal registers.
The configuration data sets the internal analog amplifier to
maximum and also enabled a digital filter that averaged the
output across a large number of samples. These settings were
necessary due to the weak strength of the earth’s magnetic
field and the low signal to noise ratio in the magnetic field in
the boat. The code then places the magnetometer into burst
mode which makes the magnetometer periodically generate
new sensor data. Also, because there are unequal influences
on each axis of the magnetometer it needs to be calibrated.

The calibration routine is based on an article written by
Mike Tuupola and the pseudo code contained therein[6].
The algorithm keeps track of the maximum and minimum
measurement on each axis of the two axis magnetometer. To
correct for anomalous magnetic fields in the boat, also known
as hard iron distortions, the algorithm averages the maximum



3

Fig. 2. Navigator flowchart.

and minimum of each axis and subtracts that average from
new measurements. It also corrects for soft iron distortion
that can come from larger ferrous objects like our keel. This
is achieved by using the maximums and minimums to create
scaling factors to remove any excess magnetic gain from each
axis. The max and min values for each axis are saved to a
configuration file.

The magnetometer is read in a loop inside of a separate
thread. The thread waits for an external interrupt produced
when the magnetometer sends a short pulse on its trigger
line every time a new sensor reading is ready and then the
heading is read from the sensor. Using this interrupt relies on
a library called libgpiod. The heading of the boat retrieved
from the magnetometer is then passed into a PID controller. If
the engineer is in autonomous mode, then the rudder position
will set to the output of the PID controller.

The GPS is also read in a separate thread using libgps.
Libgps connects with a Linux service called gpsd which
provides an abstraction layer for our USB based GPS. This
thread takes the new data from the GPS and places it in a struct
that is accessible from outside the engineer. The accelerometer
is also read from this loop to determine if the boat is upside
down.

The charge controller we chose was manufactured by Ren-
ogy and it featured an RS232 interface. The charge controller
used the Modbus protocol over its RS232 interface which
made it fairly easy to communicate with using libmodbus and
a USB to serial adapter. The register mapping was publicly
available online and we were able to retrieve much useful
information including battery capacity and solar panel voltage.

The control of the rudder and thrusters was accomplished by
changing the duty cycle on three PWM outputs of the Beagle
Bone. The duty cycle was changed via an interface built into
the Linux file system and function was created that allowed
external code to change the output of a thruster by passing
in a value between -100 and +100 to a function. The rudder
was controlled is a similar manner but its limits were -90 to

+90 which corresponded to the 180 degree range of the rudder
servo.

2) Navigator: The Navigator’s primary responsibility is to
keep track of set of points on a course and issue commands
to the Engineer to effectuate the course. The set of points,
consisting of latitudes and longitudes, are set by the captain
and the navigator stores the sequential points in a doubly
linked list data structure. The navigator has 3 primary modes:

• Off mode, where the boat’s speed and heading are set
manually

• Course mode, where the navigator set the boat in au-
tonomous mode

• Holding mode, where the navigator holds the position of
the boat within a specified radius of a point

. The navigator will enter holding mode once the course has
been completed or if set by the captain. The points on a course
are marked with a status to show if the the point has been
reached, if the point is currently being pursued, if the point is
yet to be pursed, or if the point is abandoned and no longer
valid. In the course and holding mode, the Navigator makes
decisions about moving in the short term. These decisions are
based on the current and target position of the boat which
dictates the head and the speed of the boat given to the
engineer. The Captain can tell the Navigator what parameters
to minimize or maximize, such as to preserve power, or to
get to the destination as fast as possible, or something in
between. The navigator is started in single thread, and the
flow chart seen in Fig. 2 shows the functionality described
previously. Finally, the navigator saves its state when executing
and recovers that saved state if the navigator is not shutdown
safely by the captain, implying that our program has been reset
after an ungraceful shutdown and our course should continue
from where it was last saved and not from the start of the
course.

3) Communications/Logs: The Communications compo-
nent is responsible for aggregating information generated by
the other components, transmitting that information when



4

appropriate, and receiving commands from off-board clients.
This software component also serves to create logs from infor-
mation sent from the other software modules as well as record-
ing automatic status reports. All software modules can also
send custom emergency messages to the Communicator to be
logged and transmitted. The Communication module includes
a TCP/IP server which can be used to receive commands
and send status reports and other information over Wi-Fi for
close range transmissions. The TCP/IP server could also be
used for satellite internet for global communications, however
a satellite modem has not yet be implemented due to cost
and because it was not necessary for our demonstration and
testing in Utah. The Communications component also can use
the Automatic Position Reporting System (APRS) for receiv-
ing commands and sending status information. Transmissions
from the boat will prioritize using the TCP/IP connection if
one is present, otherwise they are sent using APRS.

APRS is an amateur digital radio format aimed at providing
a location and status sharing network. In addition to sending
out specifically formatted reports, radio operators can send
messages to one another or to themselves on the network.
There is a system of digital repeaters and internet gateways set
up by other HAM radio operators which greatly broadens the
network’s reach. Packets are captured by gateways and broad-
cast on the APRS/TCPIP network, which the site APRS.fi pulls
its information from. Our project uses this APRS.fi service for
sending position reports which then updates a map with the
boat’s location on their website and app. APRS uses the AX.25
frequency keying link layer protocol, which requires a sound-
modem. Our project uses the publicly available soundmodem
software Dire Wolf. APRS allows some flexibility in parts of
the message formats which allow us to receive commands on
the boat and send status information back.

Commands use a simple format to either allow the modifica-
tion of the current boats operation or to request specific status
information. The Communications software is designed so that
buffers containing these commands from either radio packets
sent using APRS or by the TCP/IP server will be similarly
formatted, which means both sources can be processed by
the same function. These commands are parsed inside the
communications module, and then any commands not related
to communications or for status requests are sent to the Captain
to be executed.

4) Captain: The Captain is in control of the high level
health of the boat’s systems, including the power system,
navigation modes, off-boat command processing, and other
tasks which did not fit into other software components. The
Captain sets priorities for the other components, manipulating
their state based on parameters like battery voltage, solar panel
voltage, and commands from off-boat devices.

5) Telemetry Server: The telemetry server was designed as
an always-online server that logs telemetry data sent to it by
the boat’s computer. This information is retrievable via web
pages, with potential maps integration. Additionally, the course
of the boat can be modified through through this server, and the
information will be sent to the boat when the boat next checks
in. Unfortunately, we did not have time to fully implement all
of these features, though the basics functions of receiving and

acknowledging telemetry data, and displaying it are imple-
mented. This was never tested with the boat, however each
component (ack-ing a packet, receiving/processing/displaying
positions statuses, and choosing points on a map) was tested
and worked.

6) Command Client: The Command Client was an idea for
software that sits on a computer that has an IP connection
the the boat’s computer, and would allow remote control over
IP of the boat. We found that our connection to the boat was
significantly more reliable than we had originally thought, and
we never found the need to implement this. We could simply
read inputs from the terminal as the boat control software was
being run on the BeagleBone over ssh with no difficulties.

B. Software Interfaces

The four on-board components communicate with each
other via a hard-coded API. This allows for the testing of
individual modules and simulations of individual modules.
All of the software components were built against rigor-
ously defined interfaces that allowed for blind testing. This
permitted every software component to test its inputs and
outputs individually without the need to be connected to the
other systems. That is, the tests mocked the behaviour of the
other components to thoroughly test each software component
before the boat was ever built. The only exception to this
rule was the Engineer component, which by necessity required
testing against hardware.

C. Electrical

The electrical system can be broken into three groups: en-
ergy management, computing and sensors, and motor control.
Each of these groups must interface with each other and will
need to be stored in waterproof enclosures. The description of
these groups are listed below.

1) Energy Management: The energy management electrical
subsystem consists of solar panels, batteries, a solar charge
controller. We had originally planned to use a charge sensor
to read the battery charge, however the charge controller we
used could communicate this information over a serial line.
The purpose of this subsystem is to provide power to the craft
in all but the most extreme cases.

There is a portion of the Captain software component that is
also considered a part of the energy management system, and
that component monitors the output of the charge sensor, and
below a certain critical point, puts the system into a power
conserving state. This is necessary to mitigate the risk of
losing the craft due to loss of telemetry data. At the very
least, the craft should always report its location so that it may
be recovered.

The required critical components in the energy management
system are solar panels in excess of 150 W maximum output,
a solar charge controller, and a battery bank in excess of 450
Wh. We did not encounter difficulty sourcing a solar panel
or charge controller, despite slightly increased demand due to
COVID-19.



5

Fig. 3. Boat model from Autodesk Fusion 360.

2) Computing and sensors: The computer control subsys-
tem consists mainly of an SOC board running Linux, with
our custom software running on it. We have chosen to use a
BeagleBone Green Wireless for this task, as we already have
several available, and they are capable enough to handle all
of the tasks we need to complete. We will also be using an
Atmel ATSAMD51 based MCU for our backup processor to
deliver telemetry in the event of a systems failure. We already
have this MCU and a two-way radio which it will use to send
telemetry information.

The sensors we need for autonomous navigation consist of a
GPS and a magnetometer and we already have both acquired.
The GPS will interface directly with our SoC using RS-232
serial communication. The magnetometer communicated using
I2C. We will need to procure a 3G cell phone modem for
remote IP communications. This will most likely also use RS-
232 serial communication.

3) Power Delivery and Sensing: The power delivery system
is the electrical system with the most components, however
the crucial components are two brushless motors, two speed
controllers, and one servo. We already have procured a single
motor, speed controller, and servo, but have yet to determine
exact criteria for these components. Once these current com-
ponents have been tested and we are confident that they will
meet our requirements, we will order another of each.

The purpose of two motors and one rudder is for redun-
dancy. Given these three components, any one may fail and
the craft still able to move and steer. The motors are mounted
near the rear of the craft, one on the far left side, and one
on the far right side, and the rudder is mounted in the rear
of the craft, along the center line. In the event that a motor
fails, the other will be able to provide propulsion, while the
rudder can offset the misaligned center of thrust. In the event
that the rudder fails, differential thrust on the two motors can
be used to shift the center of thrust away from the center line
of the boat, compensating for a potentially stuck rudder, and
steering the boat.

D. Mechanical

The mechanical systems of the boat are mostly static, and
are simplistic in nature. The shape of the hull and center of
mass are designed with the idea that the boat only has a single
stable position in the water, and will always right from a cap-
size or turbulent waters. The construction of the boat consists
of a solid closed-cell foam interior, with sections hollowed out
for batteries and electrical components, and a fiberglass and
resin exterior. The foam interior makes the sinking of the boat
unlikely, since there will always be significant displacement of
water. The foam comes in boards that are significantly thinner
than the depth of the hull, so we had to slice the CAD model



6

Fig. 4. Loading the boat to test at Decker Lake.

into layers, cut the layers with a CNC mill, and glue each
layer together to form a hull out of the foam.

The 3d printed motor mounts are attached to a layer of ply-
wood in the boat using threaded rods. The shaft connecting the
rudder to the servo was also secured to the plywood, providing
a rigid and secure fastening of the rudder components to the
body of the craft. The rudder blade was cut from polycarbonate
and secured to the rudder shaft with a 3d printed coupler.

There is a painted steel keel that is secured firmly to both
the internal plywood layer and fiberglass exterior of the boat.
This steel keel also helps with the stability of the boat both
by lowering the center of mass, and by creating large drag
vectors that oppose horizontal movement of the craft.

The boat is designed also to have a steeply increasing area
of displacement such that changes in the weight of the boat
have a disproportionately low impact on the drag of the craft
in the water. This allows us a wide range of options if more
battery capacity is required, or other hardware changes must
be made.

To ensure that our boat would behave in water the way we
expected, we 3d printed various prototypes and moved them in
water. Also, we moved the boat in the water by pulling a string
before attaching any of our electro-mechanical components to
it to ensure its stability.

The three most difficult resources to acquire for this project
were access to a large (at least 4’x8’) CNC mill for cutting
a positive mold for our hull, the space required to store and
build the hull, and a welder and other equipment. Ted Goodell
has access to such a CNC mill which we used when we were
finished with our hull design, and Kyle Lemmon has welding
equipment, a large backyard that can be used to work on the
boat, and a garage that can store the boat.

We’ve also never fabricated a whole boat hull before.
However, one of our team members (Kyle) has repaired boats
using fiberglass and has experience welding. Also, Ted has
experience with 3D modeling with an example of the boat
shown in Fig. 3 and CNC machine operation. While this
experience went a long way to reduce our risk, we also did
research on design and construction methods before beginning
fabrication.

E. Testing and Integration Strategy

To improve the chances of successful integration, we defined
detailed software and hardware interfaces early on in the
project. We planned different testing platforms at various
stages of the project that involved connected all of our
hardware using several progressive test benches. This included
endurance tests of the motors connected to our power system
to ensure that the motors would perform well with continuous
use in water and that the power system would be able to
sustain continuous use for multiple days. We also tested that
data could be read from the sensors and charge controller and
that the motors and rudder position servo could be effectively
controlled using software. We also evaluated the software’s
feedback loop to control the rudder to maintain a heading by
spinning the boat and checking the rudder response. The bilge
pump motor and sensor were also tested, and after discovering
undesired behavior a capacitor was added to the sensor lines
to limit how fast the motor could switch on or off. These early
bench tests gave us confidence to begin testing on the water.

Our water testing was conducted at Decker Lake in West
Valley City, Utah. A padded wooden boat carrier was built
for rolling our boat around, and it also allowed us to use a
boat trailer as shown in Fig. 4. While testing at Decker Lake



7

the boat was initially tethered to ensure easy retrieval in case
something went wrong. Here we tested our software with a
laptop connected to the boat using Wi-Fi. During this testing
we were able to identify and resolve several issues. Our GPS
was not providing a reliable lock on the water which led to us
modifying the antenna position to not be under the solar panel.
We also discovered that without a lock GPS positions would
be reported as not-a-number which would cause software that
relied on those values to crash until this problem was identified
and resolved. However after multiple days of testing we were
able to successfully demonstrate that our boat was capable of
autonomously navigating a series of waypoints.

F. External Risk Assessment

1) Potential Failures During Operation: In order to design
our boat to be able to handle the extreme conditions of open
waters, we conducted a risk assessment of system failures
our boat may experience. Almost every scenario is tied to
a specific system on the boat. Scenarios 1 and 8 are tied
to the power systems consisting of the solar panels and
batteries. Scenarios 4, 5, and 7 are related to the electrical
hardware connections but they also can result from failure of
the Engineer module of our software. Scenario 2 is tied the
reliability of the software system as a whole. 3 and 9 are tied
to the hull design of our boat.

Our risk assessment was performed by imagining potential
failure scenarios given the nature of the project and our
preliminary design. The failure scenarios are listed below and
the number corresponding to each scenario is placed in a chart
shown in Fig. 5 that compares the likelihood of that scenario
without any mitigation and the severity of its consequences.

1) Total power loss
2) Software hang
3) Boat gets beached
4) Loss of propulsion

Fig. 5. Risk Assessment Chart

5) Loss of steering
6) Picked up by other people
7) Sensor failure
8) Electrical short due to salt water
9) High wind flips over watercraft
2) Mitigation Strategies: We came up with a few strategies

to mitigate the risks listed above. Scenarios 1,2 and 8 are the
most severe because they will result in a complete system
failure and prevent us from recovering the watercraft since
it will not be transmitting its location and will be adrift. To
mitigate this scenario we are included a separate computer to
act as a watchdog. It had its own battery and GPS and would
periodically broadcast its location using a cellphone modem.

3,4,5, and 7 were mitigated by the remote communications
systems on-board. While the boat is making its journey, we
can monitor its progress and location. So, if something we’re
to happen that disabled its ability to navigate or move, we
were able go retrieve it. Also, the watercraft was equipped
with navigation lights in accordance with maritime law. This
was done to aid us in locating the boat on the open water if
the boat is unable to determine its own location.

To prevent scenario 9, we designed our boat to have a low
center of mass. This was achieved with a heavy steel keel

Scenario 6 is very unlikely since our watercraft will be
moving on a very sparse body of water. However, it is still
possible. The boat has a durable label instructing passers by to
not disturb the boat and it has our contact info should someone
find the boat disabled on the water.

G. Group Management and Communications

To ensure that this project developed in a cohesive and
timely manner we held weekly team meetings. We initially
used Microsoft Teams, but due to difficulties in using this
for both this project and professional employment use we
switched to using Discord. Weekly meetings were in addition
to times we scheduled to meet for the fabrication of the boat
and software development. These meetings included discus-
sions on individual team member’s progress, any challenges
they were currently facing, and information necessary for other
team members to ensure that each endeavor was compatible.
Discord was also used to post any new information or to ask
questions related to development.

IV. RESULTS AND FINAL ANALYSIS

A. Project Demonstration

For our project demonstration, we decided to carry out our
final voyage on Utah lake instead of the Great Salt Lake. This
was because of the shallowness around the edges of the Great
Salt Lake, where we might not be able to reach our boat using
our chase boat to retrieve it in the case of failures. Thus, on
November 28, 2020 we took our boat shown in Fig. 6 to Utah
Lake. We towed the autonomous boat behind our chase boat
from the harbor towards the middle of the lake. Once there,
we carried out some initial tests by having the boat follow a
set of points away and back to us. We captured footage from
both the on board camera recording in time lapse and remote



8

Fig. 6. Deomonstration of the autonomous boat at Utah Lake.

Fig. 7. Boat’s autonomous path along Utah Lake.

footage from our personal cameras while following the boat.
This footage was used in our video presentation of our boat,
and we used this time to make sure that the boat functionalities
are working as expected. Unfortunately, we soon discovered
that our bilge pump stopped working due to a short circuit that
happened the night before where we assessed the damaged

parts but failed to test if the bilge pump was still operating.
However, we managed to pump most of the water out manually
by connecting the bilge pump straight to the batteries, and
carried on with our voyage while testing the limitations of
our water resistance. During the voyage the boat was able
to travel autonomously for over 2 kilometers, with its path
being updated live with APRS, which can be seen in Fig. 7.
Finally, to finish off our voyage we set a path for our boat
to follow which represents the letter ’U’ as a remark for our
university, but the on board GPS was damaged by the water
and was unable to get a lock to report coordinates. This meant
that our navigator was not able to carryout its functions, thus
ending our voyage prematurely. While we learned a lot from
our demonstration for the future, we clearly still have several
issues to resolve.

B. Failure Analysis
In the end we were able to demonstrate the core function-

ality of our system and it was able to follow a course of
waypoints autonomously. However, the final voyage on Utah
Lake showed some critical issues in our hardware that we did
not anticipate. Most significant was the failure of our GPS
in water and our bilge pump. We had experienced problems
with our GPS in the past but these were periodic and hard
to replicate. So we assumed that it was not a hardware issue
and could be resolved with software. This could have been
handled better by performing a water sumbersion test with
the GPS prior to the final voyage.

The bilge pump problem could have been addressed if we
had tested the pump prior to the final voyage. We believe the
bilge pump failure was cause by a wire shorting out on the
heatsink for the transistor that controls the pump. In general,
the wiring we used was solid core and difficult to work with.
We might’ve been able to manage the wiring better if we had
used more flexible wire.

There were also significant problems from RF interference
from our main radio. There are three things we could do
in the future to mitigate this problem. First, we could have



9

used shielded cable for all of our wiring. Second, we could’ve
used a separate compartment for the radio transceiver. Third,
we could place the antenna far away from the rest of the
components of the boat.

V. CONCLUSION

Throughout this project we were able to create a fully
autonomous, self sustainable watercraft. While there are more
functionalities and improvements that can be integrated, we
have learned many lessons for future progress. We are still
determined to fix the issues brought forward during demonstra-
tion and testing, in order to enter our boat in the Microtransit
challenge sometime in the future. Some of the issues that were
overlooked by us during our planning and implementation
process include: uninterrupted placement and water proofing
for the GPS module, minimizing noise and signal interference
from the APRS, and calculating the drift force vector in the
Navigator to set the correct heading of the boat.

VI. SPECIAL THANKS

We had a little bit of outside help on this project. Isaac
Doubek let us use his warehouse and tools to build our
boat. In particular, he let us use his CNC machine and he
designed and manufactured the waterproof box that holds our
charge controller. Also, Diversified Metal Services in Salt Lake
City cut the steel that made our keel. Additionally, John and
Elizabeth Goodell made a financial contribution to the project.
We are grateful to all of those who helped.

REFERENCES

[1] N. P. Reddy, M. K. Zadeh, C. A. Thieme, R. Skjetne, A. J. Sørensen,
S. A. Aanondsen, M. Breivik, and E. Eide, “Zero-Emission Autonomous
Ferries for Urban Water Transport: Cheaper, cleaner alternative to bridges
and manned vessels,” IEEE Electrification Magazine, vol. 7, no. 4, pp.
32–45, Dec 2019.

[2] N. A. Cruz and J. C. Alves, “Autonomous sailboats: an emerging
technology for ocean sampling and surveillance,” in OCEANS 2008, Sep.
2008, pp. 1–6.

[3] Microtransat. The Microtransat Challenge. [Online]. Available:
https://www.microtransat.org/

[4] ——. The Microtransat Challenge History. [Online]. Available:
https://www.microtransat.org/history.php

[5] V. Shabaz. iobb library. [Online]. Available:
https://github.com/shabaz123/iobb

[6] M. Tuupola. (2018, Feb) How to Calibrate a Magnetometer? [Online].
Available: https://appelsiini.net/2018/calibrate-magnetometer/


