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Abstract— Autonomous vehicles are a rapidly developing
technology, and for this project we focused on designing a
small land drone capable of navigating a marked course while
avoiding obstacles. The drone used an ultrasonic sensor to
detect obstacles and image processing to process and interpret
the desired path. A Raspberry Pi was the heart of the project,
handling signals, processing images, providing PWM signals to
the motor driver bridge, and running the integrated program
and its main logical functions.

I. INTRODUCTION

A. Motivation

Autonomous vehicles are an up-and-coming technology
that could have a major impact on the society. The tech-
nology behind these self-driving vehicles is still in the
early phase of development. This technology utilizes many
concepts covered in our courses as computer engineering
students. In an autonomous drone, hardware components
must work together with software to create a system that
is capable of navigating the complex driving environment. It
is very exciting to work on something similar to this new
technology that is expected to be one of the next major
achievements.

B. Background

Previous researchers have studied image processing and
developed many algorithms for lane detection and locating
the vehicle in the lane, as far back as 1990 [1]. There
are different approaches and algorithms depending upon
hardware limitations (micro-controller vs server processing,
CPU, GPU, memory, etc.). Cho et. al [2] developed a lane
following robot using a single camera as input. It was able
to recognize the left and right sides of a lane and was able
to maintain the center line of a track. Fig. 1 and Fig. 2
demonstrate the original and the detected lane using Hough
Transformation. Hough Transformation was used to detect a
lane, and a PID controller was used to control the direction
of a mobile robot.

C. Related Works

Lane detection in the real world is difficult due to a
number of factors. “Challenging situations include sharp
turns, tree shadows, camera saturation, worn-off lane lines,
poor visibility etc.” [3]. These factors require advanced image
processing algorithms to be used by real-world examples to
correctly detect lane lines and other road markings.

Another key component of autonomous vehicles is ob-
stacle detection. “There essentially exist two approaches
for obstacle detection. Active methods use sensors such as

Fig. 1. Original lane (adapted from [2]).

Fig. 2. Detected lane using Hough Transformation (adapted from [2]).

laser scanners, time-of-flight, structured light or ultrasound
to search for obstacles. In contrast, passive methods try to
detect obstacles based on passive measurements of the scene,
e.g., in camera images.” [4].

D. Proposed work

For our project, we implemented our own version of
this autonomous technology on a much smaller scale. We
utilized sensors to allow our drone to read and react to
the environment. A camera was also used along with image
processing to allow our drone to follow a marked path. A
Raspberry Pi 3 Model B, the latest version as of early 2017,
was the main computational engine of this system. Fig. 3
shows a high-level overview of the Raspberry Pi board.
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Fig. 3. The Raspberry Pi 3 Model B has 1 GB DDR2 RAM and 1.2
GHz quad-core processor. It also supports image processing libraries such
as OpenCV (adapted from [5]).

Our finished product was a small land drone that was
capable of navigating a marked course while reacting and
adapting to obstacles it encounters. The physical sensors
detected obstacles, while the camera read and followed lane
markings. Software within the Raspberry Pi controlled the
system.

E. Project Demonstration

We demonstrated our project by setting up a circular
marked course using tape. Our vehicle navigated the course
without receiving extra human input. The vehicle reacted to
changes such as the addition or removal of obstacles while
continuing to navigate the course.

II. HARDWARE

A. Chassis and Motors

For hardware components we wanted to find components
that were cheap but could still handle the required tasks for
this project. We purchased a chassis kit that consisted of
two motors, a plastic chassis plate, and a battery holder. The
Gowoops car chassis kit that was purchased from Amazon
is shown in Fig. 4. The kit included the chassis, two motors,
mounting hardware for the motors and a battery pack for
the motors that could also be mounted. The chassis is a
simple piece of plastic with a number of mounting options in
a generally rectangular shape. Since our project involved a
number of pieces that needed to be mounted on the chassis,
we elected to use Velcro to mount the other pieces of
hardware onto the chassis. This allowed us to easily add,

Fig. 4. Chassis, motors, and battery pack of the Gowoops kit.

remove, or adjust components while also effectively securing
them in place.

The motors included in the kit we purchased are simple,
cheap DC motors. Providing a voltage to one of their two
terminals cause them to spin either forward or backward.

B. Motor Controller

Since the raspberry PI board is unable to provide enough
current to power the motors, we needed a separate motor
bridge board. We used a L298N H-Bridge motor drive
controller, shown in Fig. 5, which received signals from the
Raspberry PI board and its output drove two motors.

Fig. 5. L289N motor bridge

The chip uses a dual-channel H-bridge driver. A general
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Fig. 6. General overview of the L298N motor drive controller pinout.

pin-out diagram of this controller can be seen in Fig. 6. It
takes a power supply of up to 12 volts. The board has six
logic pins, three for each motor. Each motor has an enable
pin along with two direction pins. The enable pin controls the
operation of the motor while the two direction pins control
the direction the motor will spin. The chip supports two DC
motors, providing two lines for each motor’s terminals. One
of the primary reasons we chose this motor controller was
that it can support PWM (pulse width modulation) signals.
This would allow us to control the speed at which each
motor turns, enabling the ability to make turns of varying
intensities.

Initially we had purchased a L9110S DC stepper motor
driver board to use for this project, but had difficulties getting
the PWM functionality to work properly. After going through
two of these boards, we decided to switch to the L298N
driver which ended up working extremely well.

C. Ultrasonic Sensor

Ultrasonic sensor, shown in Fig. 7, was used at the front
of the chassis to detect obstacles while driving forward. The
sensor sends sound waves at a specific frequency and waits
for the echo to bounce back. The approximate distance to
obstacles is calculated by multiplying speed of sound in air
with the total time taken to receive the echo and dividing the
product by 2.

D. Camera

Raspberry PI has a built-in interface for camera modules.
However, due to the placement of other hardware com-
ponents and other specific requirements, we had to use a
separate USB camera mounted on top of the chassis. It
captures images continuously as the drone drives around.
The OpenCV library’s built-in functions are used to further
process the images.

Fig. 7. Ultrasonic sensor with 4 I/O pins (adapted from [6]).

E. Raspberry Pi 3

We used the Raspberry Pi 3 Model B because it has
the ability to process images without the help of external
computing devices such as a laptop or server. With 1 GB of
DDR2 RAM and a 1.2 GHz quad-core processor, it was able
to meet the basic requirements of our project, and it handled
the integrated program successfully. The GPIO pins, shown
in Fig. 8, of the Pi were used to interface with other hardware
devices.

F. Power Supplies

The Raspberry Pi is powered through a portable battery
pack using a micro-USB cable. For the motors, a separate
power source consisting of 4 to 8 AA batteries is used.
By using two different power sources, it allowed us to run
programs on the PI and test the motors for a much longer
time than what would have been possible by just a single
source.

Fig. 8. Raspberry Pi GPIO pin diagram (adapted from [7]).

III. SOFTWARE

This project consisted of three major components, motor
control, obstacle detection and image processing. Each of
these components were split into their own individual classes
to follow an object oriented programming model. All of the
code for this project was written in Python 2.

A. Motor, Powertrain Model

The software uses two classes to model control of the
drone’s motors. The classes are named Motor and Power-
train.

The Motor class is assigned on construction GPIO pins
that map to the motor controller board pins forward, back-
ward, and enable. The class implements functions that set
signals for those GPIO pins to drive a motor to do an
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action. The forward function sets the forward pin high and
the backward pin low, while the backward function does the
inverse. Both of these driving functions also take a duty cyle
and configure the enable pin to a PWM signal at the given
duty cycle. The brake function sets all pins high to lock the
motor, and the off function sets all pins low to stop powering
the motor.

The Powertrain class models the use of two motors, left
and right, to act as the drone’s drive system. The class is
assigned on construction GPIO pins that map to the motor
controller board pins forward, backward, and enable for the
left and right motors. The class implements functions that
manipulate the motors to do movement and steering actions.
The forward and reverse functions call the motor’s forward
and backward functions, respectively. Forward and reverse
take a duty cycle and pass it to the motor functions. The turn
function takes in duty cycles and forward-moving booleans
for left and right motors as direct control of the motors.
The functions turn left, turn right, turn intensity, and pivot
build on the turn function, modifying inputs to fit their
respective descriptions. The wrapper turn functions take a
maximum duty cycle and forward-moving boolean, and take
an intensity parameter that is used to calculate the duty cycle
for the slower moving motor. The behavior of intensity is that
at 0, the motors both recieve the same duty cycle, and as the
intensity increases the slower motor recieves a lower duty
cycle, until the slower motor reaches a duty cycle of 0. The
turn intensity function can take a signed intensity to detect a
turn direction, left for negative, right for positive. The pivot
function takes a boolean for turning the drone clockwise.
The stop function calls the motor’s stop function.

B. Image Processing

The image processing implementation is contained within
a single class, ImageProcessor. The constructor for this class
takes two arguments: a camera port and lane type value. The
camera port is used to determine which camera the program
will be pulling images from. Since only a single web cam
is connected to the Raspberry Pi, a value of zero is always
used. The lane type argument tells the program if it will be
looking for light lanes on a dark background with a value of
one, or looking for dark lanes on a light background with a
value of zero.

The goal of this class was to take what the camera
sees, extract the location of any lane lines in the image,
and tell the vehicle how it should adjust its trajectory. To
accomplish this, binary thresholding was used. To perform
the image processing within the class, the python library
OpenCV was used. First, a color image is taken using the
attached web cam. This image is then converted to gray
scale using OpenCV’s cv2.cvtColor function. Finally, we
used OpenCV’s cv2.threshold function to perform binary
thresholding on the gray scale image. Depending on the
lane type that was specified, either the standard binary
thresholding or inverted binary thresholding is performed.

A gray scale image is essentially a two-dimensional array
of pixel values ranging from 0-255, with 0 representing pure

black, and 255 representing pure white. Binary thresholding
works by taking a value from 0-255 to use as the threshold.
Every pixel in the gray scale image that has a value greater
than this threshold is set to a value of 255, while every pixel
with a value less than the threshold is set to a value of 0. The
resulting image has only two possible color values. Ideally,
we want the resulting image to have the higher value where
lane lines are detected and the lower value everywhere else.
To maximize performance, the environment that the vehicle
will be driving in must be considered. Bright or dark areas
that are not supposed to be detected as lanes could cause
problems. Motion blur and lighting can cause noise within
the image that might make it difficult to accurately determine
lane locations. These are factors that must be considered
when designing the algorithm. Fig. 9 provides an example
of how an image is changed when processed using binary
thresholding.

Once we have a properly thresholded image, we must
determine exactly where the detected lanes are and how
to adjust based on what we see. To determine where the
lanes are, we can simply iterate over the image, which is
a two-dimensional array containing values of 0 or 255, and
see where the values of 255 are found. In the interest of
efficiency, we selected two row values that would be iterated
over to find the lanes. An example of these rows can be
seen in Fig. 9. We check two rows to be able to tell where
the lanes are as well as which direction they are slanting.
This information can help when determining how to adjust
the vehicle’s path. To reduce the negative effect of noise in
the image, a minimum lane value is specified. This value
specifies how many light pixels must be consecutively found
to count as the detection of a lane. Once a range of pixels is
determined to be a lane line, the midpoint is calculated and
stored in a tuple. The program creates one tuple for each row
that is scanned. Ideally, when the vehicle is heading straight
down the lanes, there are two values in each tuple at the
resolution of this stage.

Finally, the locations of the detected lanes are used to
determine if and how the vehicle needs to adjust. First, the
number of lanes that were detected in each row is checked.
For example, if there are two points in each tuple, we
know that the vehicle is between the two lanes and small
adjustments could be made. If one lane is detected in each
row, we know that the vehicle is veering off course and
requires more significant adjustments. Using the direction the
single lane is slanting, we could determine which direction
the vehicle needs to turn to get back on course. If more than
two lanes are detected in either row, we know there is some
sort of interference present in the image, and if no lanes are
detected we assume that the vehicle is off course.

Initially, this class returned a value between -1 and 1 that
represented the direction and intensity of the determined
adjustment. So a value of .1 would tell the vehicle to make
a slight turn right while a value of -.9 would tell the vehicle
to make a sharp turn left. Due to issues encountered as
the project neared conclusion, the return values of the class
were changed. The final algorithm utilized the same cases as
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Fig. 9. Example of how an image is altered through the process of binary
thresholding. The horizontal gray lines in the center of the thresholded image
represent the rows that are checked for lanes.

before, such as how many lanes were detected in each row,
but the return values and what they represent were changed.
The case of one lane being detected in each row was also
adjusted. Rather than using the slant of the lane to determine
which direction to turn, the location of the lane in relation to
the midpoint of the image was used. If the lane is seen in the
right-hand side of the image, the vehicle is told to turn right,
and vice versa. Instead of returning a value telling the vehicle
how to adjust, the class now returns a value simply telling
it which direction to turn, with some additional signals. A
value of 1 tells the vehicle to turn right, -1 turn left, and 0
means continue in the same direction. A value of 2 tells the
vehicle to switch directions, and a value of 3 signals that the
system has completely lost track of the lanes.

IV. DEBUGGING TOOLS

Since the Pi is running a basic command-line version of
the Linux operating system, we had to develop some tools in
order to communicate with the Pi and debug our code during
the development phase.

A. OnPiBoot Module

The first of such tools is the OnPiBoot Module which
performs two important functions automatically when the
PI is turned on. First, it emails the IP address of the PI

to pre-configured emails which can then be used to ssh into
the machine. Second, it starts a local web server on the PI
which allowed us to view the processes images and their raw
counterparts.

B. Server Module

The Server Module is an extremely helpful tool for de-
bugging and checking the status of PI. As shown in Fig.
10, it takes user input via a client program, forwards that
to the main control logic, and updates the client program
with the updated status information. It also allows us to
control the drone with the arrow keys and ’z’ and ’x’ for
acceleration and deceleration. It shows the complete status
of the motors and the state of different parameters such as
current duty cycles of each motor, turn direction, distance to
obstacles, and minimum and maximum allowed PWM duty
cycle values.

Fig. 10. Diagram showing interaction of ServerModule with other
components.

To manually control the drone, first the server is started
on the PI. Then, a client can connect to the server from
any browser and start interacting with the drone. On the
client side, a simple HTML file and a JavaScript file with
AJAX logic is served. When the user preses any key, the
key code is sent to the server. The server, on receiving
this key code, compares it with pre-defined constants at the
ServerConstants module and executes the appropriate handler
such as accelerating, decelerating, or changing direction.

Furthermore, the server also sends the current status of
the drone to the client, and the client displays the the status
as a debugging aid. To save the bandwidth on the PI and
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minimize the workload, the status is only updated after a
key press.

C. Motors Calibration Logic
The logic to calibrate motors works in connection with the

Server Module. First, the server needs to be running to start
the calibration. Then, using the navigation keys on the client
browser, the drone can be driven around for a test. While
driving straight, if the drone drifts more towards the right,
this means the right motor is running slower than left motor
and the right motor speed can be increased by pressing the
‘>‘ key. Similarly, if it drifts more towards the left, the left
motor can be calibrated by pressing the ’<’ key until the
drone starts going straight.

D. Obstacle Detection Logic
Multiple ideas were explored to detect obstacles and to

avoid collision. The ultrasonic sensor located at the front of
the drone is responsible for detecting large obstacles. Alter-
native means of detecting obstacles such as using machine
learning to detect stop signs were also tested, but did not
prove to be useful due to the inability of the PI to handle a
large amount of data and processing requirements.

1) ObstacleDetector Module: The ObstacleDetector mod-
ule is used to instantiate an instance of the ultrasonic sensor
in software. It takes three inputs: trigger pin, echo pin,
and distance threshold. The distance threshold parameter is
helpful to set in order to run a specific handler when the
distance to obstacles becomes less than the threshold. The
trigger pin and echo pin directly correspond to the hardware
trigger and echo pin of the sensor. To measure the distance
to an obstacle, first the trigger pin is set to high. This starts
sending the sound waves. After 10 microseconds the pin is
set to low and a while loop is used to wait to read the input
value in trigger pin. The trigger pin automatically goes high
when the echo is received by the sensor. The time difference
between the two events multiplied by the speed of sound in
air, 34,300 cm/s, gives the two way distance. Hence, to get
the one way distance the product is divided by 2.

Fig. 11. Diagram illustrating basic operation of the ultrasonic sensor
(adapted from [8]).

To facilitate easier integration, ObstacleDetector runs on
a separate thread once started and continuously measures

distance and updates the status. It also allows registration of
event handlers to be executed when an obstacle is detected
or is within a specified range.

2) Stop Sign Detector Module: Even though it was not
part of the original proposal, as a stretch goal an attempt
was made to detect printed stop signs placed on the side
of the lane markings using Haar Cascades; which internally
uses machine learning to recognize the features and patterns
of objects. First, a stop sign was printed and several images
of it were taken to create the positive images. Then, several
background images of different objects were taken which
acted as negative images. The images were then used to
train using the Haar Cascade and generate an XML file.
However, the generated XML file when used to test in the
real environment was not able to detect the stop signs.
Furthermore, the Pi was not able to properly handle the
extra computational load incurred by this algorithm, so the
integration with the rest of the program logic could have
significantly slowed down the process. An alternative idea
was to use a real desktop or laptop computer to perform the
heavy computing and communicate over the network with
the Pi, but as it was a little beyond the scope of this project
we didn’t focus on that part.

V. IMPLEMENTATION

In many cases, integrating numerous parts into a cohesive
whole is a difficult and taxing process. Fortunately for us,
our project’s individual components came together without
a lot of difficulty.

The first piece that was integrated was the motors. Using
the L298N chip, integrating the motors with the Raspberry
Pi was as simple as hooking up six jumper wires and
controlling their signals through software. Getting this up
and running was very quick and painless. As time went on,
we experienced a number of issues relating to the motors
and their performance, but each of those issues was caused
by hardware and beyond our control. A power source was
also required for the motors. We started by using an array
of 4 AA batteries (6V) and eventually added a second array
for a total of 8 AA batteries (12V).

The second part of the system that was added was the
ultrasonic sensor. This sensor’s purpose was to tell the system
when it should yield to an obstacle that is in the vehicle’s
path. Once again, integration of this piece of hardware with
the pi was very straightforward. It takes a 3 volt input which
the pi can supply, trigger and echo pins that are connected
using the the pi’s GPIO pins, and a ground pin. A voltage
divider was added to limit the incoming 5 volt supply to
better conform to the sensor’s requirements. Once the sensor
was wired up, a simple block of code was all it took to start
getting live updates of the sensor’s detected distance.

The final hardware component that needed to be added
was the camera. It was a simple process of installing the
necessary drivers on the pi and plugging the webcam into
one of the USB slots. Pulling images from the camera into
our program was also quite straightforward. A folded piece
of cardboard was initially used to mount the camera on the
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Fig. 12. Final build of the project as demoed on December 8th.

chassis. While visually unimpressive, it performed its job
remarkably well and provided additional space underneath
for the batteries and wires.

The main concern when integrating our project together
was space. As the kit we purchased is relatively small,
there was a limited amount of space to place components.
As previously mentioned, Velcro was used as our primary
means of mounting, which allowed for easy adjustments to
our layout. We needed to fit all of the hardware onto the
chassis while also accounting for the position and angle
of the camera. We eventually settled on the layout seen in
Fig. 12 with the camera mounted on the front half of the
portable USB power supply and the pi on the back half. The
ultrasonic sensor of course is mounted on the front end of
the vehicle with the L298N chip directly behind it. While
the final product certainly lacks refinement, it performs as
desired and clearly displays how each component of the
system interacts with the rest.

VI. DIFFICULTIES

Our choice of using cheaper parts came at a cost. Specif-
ically, the hardware used was generally fragile and in many
cases did not function completely properly.

A. Problems with the Motor Bridge

The first Motor Bridge we purchased did not properly
handle the PWM signals generated by the Raspberry Pi. It
took a long time to debug the code and hardware and to come
to this conclusion. After purchasing another motor bridge, it
worked flawlessly.

B. Problems with the Motors

Without extra load, initially, the motors performed fine
when individually tested under different power and PWM
settings. However, soon after placing both motors on the
chassis, and testing both of them together, they started
demonstrating problems. Even if the same power and PWM
signals were provided to both motors they would randomly

show different behaviors. To overcome this problem, we
tested the calibration logic as mentioned in the section above.
However, even after calibration, the drone was not fully
controllable. Either one wheel would randomly stop spinning
or spinning with less speed than requested. A large amount of
time was invested in figuring out the remedy of this problem,
but the problem was not deterministic and calibration failed
to address the issue. Finally we decided to control or drive
a single motor at a time to minimize the effect of this issue.
This ultimately allowed us to create a working demo.

One difference between the proposal and the implemen-
tation is that we implemented calibration functionality in
our project whereas the proposal talked about PID controller
logic. The purpose of either of these is to correct the behavior
of the motors. However, since the motors we used were
extremely primitive and lacked a feedback mechanism, it
was better to implement the calibration logic which allowed
manual control of each motor.

VII. CONCLUSION

The world is moving towards autonomous vehicles. Even
though our project is not necessarily scalable to a full size
autonomous vehicle, it exposed us to a few of the issues
that we might encounter in a real life situation. The project
was interesting in itself, and it required us to incorporate
knowledge from both hardware and software engineering
fields. From this project we learned to integrate hardware
and software together to create a working product. Even
though we got caught up in number of unexpected situations
and difficulties with hardware and computing limitations, the
project was successful in meeting the proposed requirements.
In addition, the knowledge and experience we gained by
working on this project will serve as a foundation for further
academic and professional advancement.
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