
Base-IC Home Automation

Rusty Griggs, Preston Baker, Brennon Loveless
University of Utah

Abstract— Home automation is a growing industry with
hundreds of products on the market. Because these products
are sold by different vendors, they are not made to
communicate with each other creating difficulties for people
who are becoming smart home owners. This project integrates
a multi-faceted home automation system. By creating a base
station that communicates with several different peripherals
we completed three tasks: eliminating the need for wiring
throughout the average household, increase consumer usability
and customization, and reduce clutter.

I. INTRODUCTION

It is the year 2017. Houses are still dumb, but cars can
drive themselves? Imagine a world where the front door
unlocks to greet the occupant upon arrival. The thermostat
adjusts itself to the occupants’ presence and preferences.
These are the first world problems that have been solved.
An affordable automated house has been created. The goal
was to provide a very modular home automation system that
can work for as cheap as a single base station, one peripheral,
and downloading an app to one’s phone. Now it is possible to
add many peripherals and build the smart house from movies
like 2001 Space Odyssey.

Home automation has existed for decades, as early as
1985 [1], though traditionally a home automation system
was for the very wealthy and had to be incorporated into
the home during construction. It required hard wiring every
device with a centralized computer. This process of running
wires manually throughout the home is why new home
construction was required rather than simply retrofitting a
home. As wireless networks and sensors have progressed, it
is no longer necessary to hard wire every device together.
This is what has been demonstrated in this project. No com-
munication wires were used between the base station or any
peripheral. The home automation system described in this
paper communicates wirelessly using a distributed/meshed
network as shown in fig. [2].

The current state of the art in home automation involves
many different systems communicating to the user through
many different input sources. For example, a light switch
and a thermostat require specific inputs and varied outputs.
But if the light switch and thermostat are controlled by a
smart device, they would likely have their own management
interface. In this example, the user would have to open one
app to turn off their light, then open another app to turn
down the thermostat. A true home automation system, where
many peripherals come together to form an ad-hoc system,
is not an accident. Each peripheral works through a single

management interface and is designed and engineered to
work together [3].

As computer engineers, designing a system that connects
people to their home is an intriguing idea. The Internet of
Things is the future and its potential should be studied and
understood. Many things in homes already connect to the
Internet and can be controlled wirelessly, such as a TV
or a refrigerator. The problem is that all of the controls
are disconnected and disjointed. The controls for items
and appliances around the home have been centralized and
incorporated into a unified home automation application. The
authors have used the skills that have been developed over
the course of their university education to build a system
that seamlessly connects the occupant to the home. It has
been proven that this type of project is easily modularized
by developing a common protocol between the base station
and the peripherals and have used the modularization of the
project to develop and work on each peripheral individually.
Only in the final months of development were all of the
sections of the project brought together to form a unified
home automation system.

The original idea and plan was to simply build a small
automatic door. An automatic door shouldn’t be so hard for
a home since it seems to be ubiquitous at supermarkets and
other public places. All that would be needed is some kind
of door opening apparatus that is connected to an app on
one’s phone. Sensors would then be incorporated in the door
so the door wouldn’t swing open or closed if anything was
in it’s path. The thought of overcoming those obstacles and
working together to achieve this goal is a strong motivation.

II. NETWORK CONFIGURATION

The first hurdle was deciding on the network configuration.
A few modules were tested, specifically a TI CC1310 that
used a hub-and-spoke style network configuration, and a Zig-
bee module implementing a meshing network configuration.

The first network considered was the hub-and-spoke style
network using TI CC1310’s. In this network configuration
every device communicates directly with the base station
which in turn relays the message to the relevant peripheral.
As shown in Fig. 1.

The hub-and-spoke configuration has the advantage of be-
ing a simpler configuration when covering a small area. Each
peripheral communicates directly with the base station and
the base station communicates directly with the peripheral
that it needs to send a request to. It also presents some
limitations, namely the distance that can be covered. This
configuration is most prevalent in WiFi networks where every



Fig. 1. Hub-and-spoke Network Configuration

device has to be in close proximity to the router. WiFi net-
works get around this limitation by allowing a single network
to be represented by a number of routers with overlapping
coverage. While this works for WiFi networks the complexity
of a home automation network would increase dramatically
by needing to have the base stations in contact with each
other to coordinate tasks across multiple base stations.

Another trade-off for the hub-and-spoke modules is that
to increase the range the transmission speed has to be
drastically reduced. This is fine for simple messages, but
when transmitting something like an IR hex code over the
air this speed reduction can, perceivably, slow the network
and degrade the user experience.

The next network configuration discussed is a mesh style
network configuration shown in Fig. 2. In this configuration
the peripherals would be able to communicate with each
other, and each module would be able to relay the message
to the correct location (I.E. to the base station).

The mesh configuration has the benefit of being able to
cover much larger distances while maintaining high trans-
mission speeds by relaying the messages through adjacent
peripherals. The Zigbee modules used in the project imple-
ment Dijkstra’s algorithm for finding the shortest path from
peripheral to peripheral. This means that if an object were
placed in the middle of two modules as demonstrated in

Fig. 2. Mesh Network Configuration

Fig. 3. Meshing Path Around Rather Than Through

Fig. 3 the network would naturally create a path around
that object (given that peripherals exist around the object)
rather than trying to blast a signal through the object to reach
the other peripheral. Since lighting is so ubiquitous in home
automation this makes for the perfect backbone to get around
the entire network, through tough obstacles, and cover great
distances. The routing logic is already built into the Zigbee
module firmware and can simply be used, rather than having
to be implemented.

While the hub-and-spoke network configuration is entirely
possible, it was decided to go with a mesh network to reduce
the complexity of the network as well as covering larger
distances at a higher rate.

III. PROTOCOL

The next step was to design a protocol that peripherals
would use to communicate to the base station. The major
concern was how to support different types of inputs and
outputs that a peripheral may use. For example, the 9
button keypad that was used during the demonstration of the
project consisted of 9 toggle inputs both in hardware and
in software. The curtain consisted of a single range output
that controlled a stepper motor. The door consisted of 2
toggle inputs to control the deadlock and the opening/closing
motors individually. The TV remote had a hex output that
could output an IR signal used to control the TV. Last, the
Android app that was used as part of the demonstration
has a dynamic interface, shown in Fig. 4, that reads every
peripheral from the network and displays the correct inputs
to the user depending on the peripheral they wish to control.
For example, the user could control the door as shown in
Fig. 5, or the user could control the position of the curtain
as shown in Fig. 6.

The protocol defined the way the peripherals were devel-
oped in addition to the hardware used for the peripherals. The
protocol is hardware independent but was only implemented
on the Zigbee modules for the purpose of the demonstration.
The protocol, specifically the recipes used in the protocol



Fig. 4. Android app showing a list of all available peripherals.

allow for the same protocol to be routed out to any device
through the use of queues on the base station. For example,
a signal could be received on the Zigbee device on the base
station but then routed out via WiFi/ZWave/Bluetooth on the
base station, making the protocol hardware independent.

Peripherals send out a packet over Zigbee containing the
structure of the protocol. This packet is always routed to the
base station since the base station is the only place that the
recipes exist in the system. The base station also knows the
addresses of the receiving peripheral or peripherals since the
recipes are not restricted to a single input and a single output.
Rather, they can have a single input and multiple outputs.

The peripherals communicate with the base station using
a simple protocol that begins with a command number, then
any command data separated by tabs that is necessary for
that command to execute. The command is ended with a
newline.

The commands and their explanations are as follows:
First, a peripheral registers itself with the base station. It

will provide its name and all the input services and output

Fig. 5. Android app allowing the user to open/close the door and control
the deadlock.

services it provides which will automatically be enumerated
as input service one, input service two, ... , input service
n and the same for the output services. The first digit will
always be the command number and the rest of the command
will be dynamic depending on the command.

A. Register a peripheral (command 0)

0\tPERIPHERAL NAME\tNUMBER OF INPUT
SERVICES\tINPUT SERVICE TYPE\tINPUT
SERVICE TYPE\tNUMBER OF OUTPUT
SERVICES\tOUTPUT SERVICE TYPE\tOUTPUT
SERVICE TYPE\n

For example: 0\tLamp Switch\t3\t1\t2\t3\t1\t1\n:
Register a peripheral with name “Lamp Switch” that provides
three input services a hex service as input service one, a
range service as input service two, and a toggle service as
input service three, as well as one hex output service as
output service one.



Fig. 6. Android app allowing the user to control the position of the curtain.

B. Send hex value (command 1)

1\tSERVICE NUMBER\tCOMMAND VALUE\n
For example: 1\t1\tFF0000\n: Send hex FF0000 to ser-

vice one.

C. Send a range value (command 2)

2\tSERVICE NUMBER\tRANGE VALUE\n
For example: 2\t2\t50\n: Send 50% range to service two.

D. Toggle a service (command 3)

3\tSERVICE NUMBER\tSERVICE VALUE\n
For example: 3\t3\t01\n: Toggle service three. Toggles

also allow a value to be sent so a peripheral can be directed to
a specific state if necessary; i.e. a door can toggle open/close,
but it is also desired that the door is directed to close even
if it is already closed. On this “toggle close” command, the
door would do nothing if the door was already closed.

E. Read a value from a service (command 4)

4\tSERVICE TYPE\tSERVICE NUMBER\n

For example 4\t1\t1\n: Read service value of type hex
from service one.

The protocol supports modules registering themselves with
the base station. As long as the peripheral and the base
station are listening on the same channel the base station
will allow the new module to register itself with the base
station. After a module registers itself with the base station,
the module provides a name to the base station along with
whatever input and output services that peripheral provides.
For example, a module will report its name is “Light Switch”
and that it provides a toggle output service and a toggle
input service. In most cases peripherals would provide an
input service that is directly connected to it’s own output
service to allow the phone app to dynamically build the
interface for that peripheral. This configuration allows the
Android app to control the light switch without having
another peripheral that is specifically built for controlling
the light switch peripheral.

With only a few commands the protocol is able to support
a multitude of peripherals. The peripherals that inspired the
current protocol, along with the services they would provide,
are as follows:

• Button Pad / Hex
• Light Switch / Toggle
• Power Outlet / Toggle
• Curtain / Range 0 - 100
• Door Open and Close / Toggle
• Door Lock / Toggle
• IR Emitter for TV control / Hex
• Light Dimmers / Range 0 - 100
In order to support the advanced interactions between

peripherals that has been discussed the protocol will interact
with recipes that exist on the base station. These recipes will
take in commands from input services commands based on
the input that was received. These recipes will follow the
familiar pattern called If This Then That (IFTTT) [4].

Some examples of work flows are as follows:
• If Light L1 is turned on, then Send IR Code to TV1
• If temperature in house is greater than 90 degrees, then

set window position to 25%
• If door is left ajar for 30 minutes, then close door

IV. RESULTS

The Base Station, shown in Fig. 8, is the center piece to the
entire project. The Base Station is the simplest peripheral as
far as the hardware goes, containing only a Raspberry PI and
a Zigbee module, but it housed the protocol and recipes for
the project. This is by design and allowed the peripherals to
be very simple. The peripherals are responsible for relaying
any input they received to the base station and responding to
any messages received for themselves. The Base Station then
took that information compared it with the recipes that are
stored locally and sent out the appropriate responses to the
network to control the rest of the devices. The Base Station
also has a web interface that allows the user to create, edit,
and delete recipes.



Fig. 7. Final Project

The Door Peripheral, Fig. 7 (1) and Fig. 9, proved to be
a mechanically intensive project. Opening and closing the
door turned out to be complicated and we had to try different
motors to find one that would successfully open and close
the door. Luckily, we made the door small enough that it
could be powered by a very low geared DC motor. The door
was also fitted with a motor to lock and unlock the deadbolt.
The door was initially powered with batteries, but the power
required to open and close the door meant that the batteries
didn’t last very long. We ended up powering the door using
a bench top power supply.

The TV Remote, Fig. 7 (2), is an IR emitter with codes
hard coded into the Arduino and controlled via presets. This
works but could have been much better if we could send the

codes from the Base Station to the peripheral, rather than
relying on the peripheral to store the codes. The codes are
huge and take up a significant portion of memory. We also
came across issues trying to transmit the codes from the Base
Station to the peripheral (although this is the way it should
have been done), in addition to this we needed to have a
delay where we could send a code from the Base Station to
the peripheral, and after a number of seconds send another
code. For example, sending the power command then waiting
a number of seconds, then sending the channel commands.
Currently this is not possible.

The 9-Button Keypad, Fig. 7 (3), is a very simple pe-
ripheral. The Arduino has nine buttons attached directly to
it. Whenever the Arduino senses that one of the buttons



has been depressed it sends the relevant signal to the Base
Station. The Base Station then matches which button was
pressed with a recipe and sends out the appropriate signals
to the network.

The Android App, Fig. 4 Fig 5 Fig. 6 and Fig. 7 (4),
worked by making an API call to the Base Station. This
API call returned the entire state of the network including
all the inputs that are available on the network, which was
used to generate the app interface. The app then displayed
the peripherals that existed on the network, this allowed
the app to impersonate any peripheral on the network and
send commands to the Base Station for the impersonated
peripheral.

The Four Relay, Fig. 7 (5) and Fig. 10, is used to control
four wall power outlets. Each outlet is wired individually to
a relay which is wired inline to break the circuit to the outlet
when the relay is disengaged. The four relays are connected
to an Arduino and Zigbee module. The Base Station sends
control signals to the Arduino to turn on or off each outlet.

The Fancy LED, Fig. 7 (6) and Fig. 11, consists of a one
meter strip of RGB LED’s that are individually addressable.
This allows for animations as well as single colors from
the Fancy LED. The Arduino again became an issue here
and was running out of RAM while attempting to receive
communications from the Base Station and playing the
animation. This could have been alleviated by using a more
powerful micro-controller that can run a real time operating
system, such as FreeRTOS. This would allow the peripheral
to schedule tasks like playing the animate and checking for
messages on the Zigbee network making them appear to be
running at the same time.

The Thermostat, Fig. 7 (7) and Fig. 12, while not con-
nected to an actual heating and cooling system, simulated this
by displaying a red LED when the system would be heating,
displaying a blue LED when the system would be cooling,
and a green LED when the system would enable the fan.
The Thermostat worked by sensing the ambient temperature
and working to make that temperature match the temperature
that the thermostat was set to. The Base Station would send

Fig. 8. Base Station

Fig. 9. Door

Fig. 10. Four Relay

a preset number to the thermostat which would configure the
thermostat to be in one of three modes: heating, cooling, and
off.

The Curtain, Fig. 7 (8), was controlled by a range which
allowed the curtain to be placed at any position between
0% and 100% open. This peripheral can only be controlled
by the Android app since there is no potentiometer input to
the system. Initially we thought that the curtain was going
to have two stepper motors one to control the opening and
one to control the closing of the curtain, but with a little
engineering we were able to 3D print a device that would



Fig. 11. Fancy LED

Fig. 12. Thermostat

allow for the curtain to be opened and closed with a single
peripheral.

A demonstration of the final project can be found on
YouTube [5].

V. FUTURE
This project was built to be a proof of concept that an open

home automation system is possible. After doing research
on newer technologies (I.E. Bluetooth Low Energy Mesh)
it seems that the protocol should evolve in that direction
rather than using Zigbee. Bluetooth Low Energy (BLE) has
a security built directly into the core of the specification
while the Zigbee implementation used in this project had no
security at all.

While security is also built into the Zigbee specification
the process has a few flaws. First and foremost mobile
devices such as a cell phone do not have Zigbee built in.
Meaning that in order to configure a Zigbee device, or
provide a unique encryption key (similar to a WiFi pass-
word) means that the Zigbee device would have to join the
Zigbee network unencrypted initially in order to receive the
encryption key which would be sent over an unencrypted RF
connection. Also, since the idea behind this home automation
system is to be as open as possible it is not possible to hide
any default encryption key in the source.

Alternatively, using a BLE Mesh would allow the user
to install the device, connect to it with a smart phone, and
configure the device to join the BLE mesh network using a
custom password. BLE has methods for upgrading a pairing
to an encrypted connection so the user can securely send the
custom password to the new device. This process would be
as follows:

• The user would install the device. In the example of a
controlled power outlet the user would insert the Base-
IC device in between the wall and the utility that is
going to be configured.

• The Base-IC device would then determine that is cannot
connect to a mesh network, either because the mesh
network it was connected to before is now unavailable,
or because it has never been connected to a mesh
network before.

• The Base-IC device would put itself into a configuration
mode where the user can use a phone app to choose
from a list of available mesh networks and enter the
password securely into the device.

• The Base-IC device would store the mesh network and
the mesh network password, so when the device is
restarted it will automatically re-connect to the last mesh
network.

• The Base-IC device would then disable the configura-
tion interface and connect to the mesh network where
any further configuration can occur through the home
automation app.

The beauty about this is that the device only needs a single
BLE capable RF radio, and the app that is used to control
the home automation network is the same app that is used
to configure the new Base-IC devices.



REFERENCES

[1] [Online]. Available: https://www.youtube.com/watch?v=0BHIknNa6Eg
[2] C. Badica, M. Brezovan, and A. Badica, “An overview of smart home

environments: Architectures, technologies and applications.”
[3] W. K. Edwards and R. E. Grinter, “At home with ubiquitous computing:

Seven challenges.”
[4] L. W. Braun, “Life hacking with ifttt: ’if this then

that’ links your applications to help streamline your life.”
School Library Journal, vol. 2, p. 15, 2013. [Online]. Available:
http://link.galegroup.com.ezproxy.lib.utah.edu/apps/doc/A342467280/AONE

[5] P. B. Rusty Griggs, Brennon Loveless, “Demo day university of utah,”
2017. [Online]. Available: https : //youtu.be/59mXbl6lT8


