
1

Bumper Car Sumo
Jaden Simon - simonjaden223@gmail.com
Melvin Bosnjak - meco0597@gmail.com

Daniel Humeniuk - humeniukdaniel@gmail.com
http://bumpercarsumo.weebly.com/

Abstract— BumperCarSumo is a fully interactive mul-
tiplayer game. Each player controls a little robot on a
designated play area. A robot is controlled by a central
game hub that communicates to the robots via WiFi.
The controllers are connected to the hub with the use of
Bluetooth technology. The robots are powered internally
with a rechargable lithium ion battery and moves about
the play area with geared DC Motors. The goal of the
game is to be the last remaining player on the play area
by any means possible. Once a player has fallen off of
the play area, the player has lost the match. The hub
tracks each robot with a web camera and an OpenCV
program to ensure that once it has fallen off the play
area, the robot will turn off and remains off until the
next game. Once all but one player remains, the round
is over and is free to be played again.

I. INTRODUCTION

The purpose of BumperCarSumo is to provide en-
tertainment that mirrors popular Battle Royale game
play with the use of physically controlled objects.
The components currently required for game play is
a white play area, a dark (black if possible) out of
bounds zone, a web camera, a Raspberry Pi 3 B+, the
BumperCarSumo program loaded onto the Raspberry
Pi, two to four remote controlled robots, and the
corresponding amount of controllers. Each component
will be described throughout this report.

II. BACKGROUND

The concept of BumperCarSumo originated from a
desire to control robots and stage a free-for-all match
between players. Battle Royale video games have be-
come a huge success in recent years and we wanted to
attempt similar style of ”last man standing” with these
remote controlled robots.

The concept of the robots came from the Ollie
Sphero. The comparison of the Ollie and our design can
be seen in Figure 1. Our design came out much bigger
than expected due to the gears required to slow the
motor down. The motors also created another reason for

more space. The material used for traction was much
simpler as we were intending for the robots to be able
to slide if hit but still able to maintain a grip on the
play area.

Fig. 1: The Ollie from Sphero comparied with our
Design

Source: Adapted from [1]

III. PROJECT IMPLEMENTATION

The central piece of the game is the Game Hub.
This Hub is constructed with a Raspberry Pi 3 B+
which included enough features to make the gameplay
possible. The robots are PCBs and DC Motors wrapped
in a 3D printed shell. Each PCB receives commands
from the Game Hub via WiFi. Players control each
robot with the use of a Wii Balance Board which
is connected to the Hub through Bluetooth. The web
camera is connected to the Game Hub with USB and
detects the unique color of each robot. The play area
is a 4ft round surface in which the robots are able to
move around and play. The camera sits above the play
area on an 8ft post. Each component of the project is
described in more detail below.

A. The Game Hub

We utilized a Raspberry Pi 3 B+ as our game
hub. The device contained both Bluetooth and WiFi
capabilities which was critical for communicating to
the external game peripherals. The Pi was an excellent

2

choice as it is small, portable, and capable enough to
handle the software required for the game.

The controllers were connected to the Game Hub via
Bluetooth. The controllers are based on Wii Balance
Boards. The Game Hub starts the controller logic in a
separate thread and once connected, continuously polls
the Bluetooth devices to ensure they stay connected.
When a game is in progress, the data collected from
Bluetooth is processed. Once processed, the Game Hub
will determine in which direction the player is leaning
and send the corresponding command to the player’s
robot.

B. Controllers

For our controllers, we used the Wii Balance Board.
Our intention behind this controller system was to add
layers of complexity and extra challenges to gameplay.
The interface was an open-source library found on
github. There were a few versions of the library but we
electected to use the library written in Python. We made
an API for our purposes to be as simple as possible
with only two functions that connected to a board and
collected the data from the board.

Our API relied on a single WiiController object that
connected to multiple boards. The functions of the API
are start and get data. The start function accepts the
MAC Address of one of our boards and instantiated
the board to a corresponding WiiBoard object board1,
board2, board3, or board4. Once connected, the board
will need to be continously polled to ensure the Blue-
tooth stayed connected. The get data function accepts
the MAC Address of one Balance board and an array
of that board’s data would be returned to the Hub.
The Hub then processes this data and sends the proper
commands to the corresponding robot.

C. Robots

The robots are a mix of hardware and software.
A PCB lies within each robot that contains an ESP-
12F. The ESP-12F runs custom software that drives
the robot. We printed custom shells and wheels to
protect and drive the robots. The custom hardware and
software made debugging the robots a challenge but a
worthwhile effort nonetheless.

Fig. 2: The custom PCB that controls each robot

The custom hardware lies in the PCB which can
be seen in Figure 2. The PCB contains 4 mounting
pads, 2 for each DC Motor that drives the robot, as
well as M2.5 drill holes on each corner. The drill holes
allowed for the PCBs to be mounted within the shell
as seen in Figure 3. The ESP-12F chip on the PCB
was programmed with the use of USB and a CP2104
programmer chip on the board. An MPU is located in
the center of the PCB. The MPU was integrated as a
backup to the camera detection. The data from the MPU
would allow us to determine if the robot had fallen from
the board. This was later discarded as our Computer
Vision portion of the project worked as expected. A
DRV8835 motor driver was used to control the motors,
capable of delivering up to 1.5A per motor. A voltage
regulator was used to convert the higher battery voltage
to a steady 3.3V.

The software in the ESP-12F is responsible for
receiving data from the Game Hub via WiFi to drive the
motors. Some additional functionality was also present,
such as monitoring battery levels. Static IPs were set up
for each PCB to ensure that they remained consistent
whenever the game was setup. A better way of doing
this would be some sort of discovery protocol. The
integration of both hardware and software on a custom
PCB was a challenging and rewarding endeavor.

3

Fig. 3: The finalized robot components in shell

D. The Camera and OpenCV

The camera used for the project was a Logitech web
camera. We considered the Pi Camera as well for the
camera but proved to be unreliable. Our first experiment
with the Pi Camera ended up shorting something out in
the circuitry and our first Raspberry Pi was inoperable.
The Pi Camera did offer faster operating speed as the
USB interface was bypassed but we elected to use the
Logitech camera as it was safer. We used a 12ft male-
to-female USB extension cable which allowed for the
camera to rest on top of the camera perch and not the
entire Raspberry Pi system which allowed us to easily
use the Pi on a nearby table. After a few tests conducted
with the camera and OpenCV, any fears of latency were
soon removed as the camera proved to be an easy to
use asset perfect for the job.

The OpenCV program that we used and tweaked
captured color only on a white mask and held each
color to a pixel threshold to determine if the robot was
in or out of bounds. When the game began, the play
area needed to be empty. The camera would sample
the play area a few times and create a black and white
mask. The white play area would be captured and all
other colors would receive a black mask. Everything
within the black mask would be undetectable regardless
of color. Each robot color had an associated color
hue with a range that would allow each robot to be
detected. Each color had a minimum pixel count to
be considered detected. Once a player falls off the
board, the pixel range for that particular robot would
be under this threshold and the Game Hub will send
a stop command to the robot and no longer treat the
associated controller’s input as valid.

E. The Play Area

The play area is simple in nature but plays an
essential part in the overall game. We painted the table
top white. The floor we were working on captured the
carpet as black, avoiding a need to place a black sheet
as the backdrop. As described in the camera section,
every color that would enter the black region would be
filtered out, meaning once the robot was off the white
play area, it turned off and was unable to accept user
input. The most complex piece of the play area was
the 8ft pole which held the camera. Figure 4 shows
how high up the camera needed to rest in order for
the entire play area to be seen. It was essential the
camera be at this height as to ensure all robots in the
area would be captured. We were lucky enough to get
a table that sat off the ground enough so that once a
player was out, they could not reenter if a glitch with
the Computer Vision were to occur. Though this proved
to be a nonissue, it was reassuring to have a backup in
the worst case scenario.

Fig. 4: The constructed play area

IV. DISCOVERIES

We learned pretty quick that the original DC motors
we were using were far too powerful for such a

4

small play area. The motors offered over 1000 RPM
which can be handled with gearing the motors. The
unfortunate result of this, however, was the small area
in which the gears were to fit. The first few attempts
at gearing the motors were a success in many ways
and a failure in others. The gears did work and we
were able to get a simple gear test box working as
seen in Figure 5. The gears faced problems with proper
meshing, resulting in small pieces of PLA to fly from
the test box. With lubrication, the problem continued
still. We also attempted acrylic gears as a laser cutter
was able to make more precise cuts, allowing the gears
to mesh better. Similar problems persisted with acrylic
gears as well and any lubrication on the acrylic gears
proved to be fruitless.

Fig. 5: The first ideration of the designed gears

The biggest shortcoming we encountered was not
developing a prototype in early November. We ordered
some of the pregeared motors in October and elected to
go with the more powerful motors that required custom
gearing to work. In retrospect, we saw that even though
we did not intend to go with the pregeared motors, we
could have and should have created a prototype with the
pregeared motors to test the game area, controllers, and
OpenCV with a working robot. This would have also
saved time after determining that the custom motors
would not work as expected.

V. EVALUATION

Despite any setbacks and initial concerns, the project
was a huge success. While we were not able to ac-

complish all of our stretch goals, the most basic of
play modes was achieved and everyone at the Demo
Day had fun playing the game. There were many areas
of the project that had unique hang-ups, challenges,
and roadblocks. Some of these we were able to solve
with little to no issue, others took some time, and the
leftovers were abandoned. The next section will cover
aspects of the project that worked well and others that
are now dead in the water.

The gears are among the greatest achievements and
failures of the project. If they had succeeded, the robots
would have had more power, leading to harder colli-
sions and potentially more intense games. After a few
tests with a completed robot with the custom gears, we
soon discovered that the gears proved to be unreliable.
The lubrication did stop the gears from heating up and
melting but the inconsistent gear meshing led to an
unsuccessful implementation. While testing the custom
geared robots, the gears would not always turn and got
stuck easily. This would have been a disaster during
Demo Day. After a few days of trying to solve the
issue and attempting to make acrylic gears, we decided
to ditch the gears and use pregeared DC Motors. The
pregeared motors did not offer the same power but they
were able to get the robots moving consistently. The
gears were devastating to the project and is the main
reason why our stretch goals were not met.

The gears not only cost us extra time, it cost us
extra money. The original motors purchased totaled
at $12.00. With it, brass rods were required along
with lubricant. Once acrylic gears were tried, three
acrylic sheets were purchased, totaling around $16 as
well as adhesives. The gears required several iterations
of shell components which resulted to a loss of our
PLA filament. With the excess filament, we could have
increased the amount of players on the board. The
original motor and gear scheme took up a lot more
room than the later design, leading to larger shells
which required more filament. The gears did end up
costing us more but fortunately the expenses were not
too excessive. We are not mechanical engineers.

Despite the gears being a loss, the design of the shell
proved to be a success. The design was modular in
nature. As can be seen in Figure 6, there are inserts
for the gear plates that were later modified to suit
the needs of the pregeared motors that were used
in the final design. The batteries used in the shells
weighted it down enough to prevent the body of the
shell from excess rotation. Ramps were also added to
fit in where the square hole was that was originally
designed for USB cable insertion. This was a fortunate
coincidence for us as the ramps prevented the robots

5

from rotating the body forward and also added an extra
game mechanic, allowing to move other robots from the
side and not the only the front. Though we found that
the body will still rotate with the ramps when three or
more players were jumbled up, it has proved to be a
fun ”feature, not a bug” game mechanic. The wheels
required a small piece of electric or duct tape for good
traction on the play area. Fortunately, the cost of the
shell was limited to the cost of the PLA filament which
totaled no more than $40. The shell was designed well
and the modular design saved us as many changes were
made later in timeline.

Fig. 6: A snapshot of the insides of the original robot
shell with gears

The PCBs used for the project were well designed
with each iteration and worked well every step of the
way. The first PCB was designed in April, right before
our planning phase was complete. This preliminary
PCB was equipped with pinheaders (absent in later
models) to debug the design. This worked in our favor
as we discovered that the MPU held some pins low by
default which prevented the ESP-12F from powering
up. We were able to make this discovery by utilizing
I2C to communicate with the chip and turn the pin
to high to activate the ESP-12F. The second PCB
corrected this by removing the connection of that pin to
the ESP-12F. This was a trade off as we were no longer
able to receive interrupts from the MPU. The second
PCB also contained drill holes for mounting the PCBs
into the robot shells as well as an optimized placement

of components. The DRV was moved to the middle
of the board with the MPU for the purpose a more
even driving power. The third and final PCBs were very
similar to the second with a few parts moved around to
ensure each component was clear of the screws in the
drill holes. The PCB, while a tedious task to solder, was
one of the most successful components of the project
that required very little change.

The Raspberry Pi was a very useful aspect to the
project, allowing us to use free and open source li-
braries, but we were ill prepared for the issues it came
with. The Raspberry Pi worked very well for our needs
and the multicore processing power helped the game
logic run smoothly. Melvin was able to enable thread-
ing so the Bluetooth controllers, WiFi, game logic,
and camera/OpenCV interface ran seamlessly. We were
unaware of the poor power protection provided by the
Raspberry Pi hardware. The first Raspberry Pi was fried
after the Pi Camera drew too much current which also
broke the Pi Camera. We assumed incorrectly that the
Raspberry Pi would have a robust power protection
scheme. The second Raspberry Pi was fried for un-
known reasons. The third Raspberry Pi fried when two
GPIO pins shorted to one another. Once we discovered
how vulnerable the Raspberry Pi’s are, we treated the
last with extra special care. The final Raspberry Pi
was to remain in the casing and only be connected to
anything via USB, HDMI, and the official Raspberry Pi
power supply. Once these issues were all sorted out, we
treated it as delicately as a newborn baby. We were on
the verge of porting all of the code to someone’s laptop
but the laptop would require running Linux as all of our
Raspberry Pi code works only on Linux libraries. This
would have been an even larger upset so we decided to
keep with the Raspberry Pi and we fortunately found
out all potential power issues and it suited our needs.

The Wii Balance Boards made the game play a lot
more fun than intended. When selecting our controllers
in our initial proposal, we stated concerns about mul-
tiple Bluetooth objects in a single area creating a lot
of noise. This proved to be a nonissue as there were
little to no issues with interfacing with the Wii Balance
Boards. We used a simple control scheme to make
the game play intuitive, fun, and exciting. When a
player leans forward, the robot moves forward. When
the player leans back, the robot moves back. When
leaning left and right, the robot would only rotate in
that direction. This added some extra strategy from a
player standpoint. Players need to now think a few
moves ahead to ensure that they will not be vulnerable
when needing to move right or left. The controllers
proved to be a vital component that made the game so

6

enjoyable.
The use of WiFi and Bluetooth to control the game

was a huge success. During our presentation, we noted
that were was a lot of potential for noise interference
and latency issues. Fortunately we did not encounter
any of these issues. The response time from controller
input to robot movement was so good there was hardly
any latency observed. The response time of the camera
and OpenCV was also fast enough that when a robot
left the arena, it was immediately turned off.

VI. BILL OF MATERIALS

Per PCB :
1x DRV8835 low−v o l t a g e motor d r i v e r
1x JST 2 Pin SMT RA c o n n e c t o r
1x MPU 6050 IMU
1x SMT USB Mini−B c o n n e c t o r
1x MCP73831 / 2 LiPo b a t t e r y c h a r g e r
1x TLV757P LDO
1x ESP−12F
1x CP2104−F03−GM
7x 10k Ohm
4x 1k Ohm
1x 4 . 7 k Ohm
1x 2k Ohm
3x 3 . 3 k Ohm
1x 10k Ohm 1\%
1x 33k Ohm 1\%
1x 100 uF e l e c t r o l y t i c c a p a c i t o r (t h r o u g h h o l e)
5x 0 . 1 uF c e r a m i c c a p a c i t o r
3x 1 uF c e r a m i c c a p a c i t o r
3x 10 uF c e r a m i c c a p a c i t o r
1x 2 . 2 nF c e r a m i c c a p a c i t o r
1x 10 nF c e r a m i c c a p a c i t o r
2x LEDs
2x NPN t r a n s i s t o r Package : SOT23

1x Tab le wi th no l e g s
1x L o g i t e c h web camera
1x R a s p b e r r y P i 3 B+
2kg PLA
Spray p a i n t
V a r i o u s s c r e ws

After totaling each invoice, we have determined that
our project has cost approximately $860.

VII. CONCLUSION

Our senior project proved to be a huge success and
we learned many valuable lessons from it. We were
able to work the first three months of the semester
in parallel which resulted in rapid development. We

began integrating around November and had it fi-
nalized just in time to present at Demo Day. The
project milestones and meeting logs can be found at
http://bumpercarsumo.weebly.com/.

REFERENCES

[1] Ollie. Accessed: March 6th, 2019. [Online]. Available:
https://www.sphero.com/ollie

