
UNIVERSITY OF UTAH ECE 4710: SENIOR PROJECT 1

DaVinci-Bot Project Documentation
Ellen Brigance, Nate Page and Evan Scullion

Abstract—The goal of this project was to design and build a
2D plotter with a TCP server and GUI application. This was
accomplished by using stepper motors, CNC frame, a micro-
controller, an ESP32 WiFi chip, and C# to build the application.
With the project assembled, we were able to have the plotter
draw images that were provided to the GUI by the user.

Index Terms—Image Processing, Plotter, Stepper Motor Ac-
celeration, WiFi Server

I. INTRODUCTION

The DaVinci Bot was originally inspired by Sonny in I,
Robot [1]. There is a scene where Sonny is drawing his dream
and the picture he draws is an entirely cross-hatched landscape
and we set out to create an artistic project that would imitate
this effect with real world pictures. The resulting machine
utilizes a CNC style frame with lead screws to move the gantry
and drawing surface as seen in Fig. 1. Our machine takes an
image provided by the user, isolate contours based on a user
defined threshold, and draws the image on paper using a raster
style drawing technique.

Fig. 1: DaVinci Bot

II. MAIN PROJECT COMPONENTS (TOP-DOWN)
We divided this project into three main parts, GUI, Motor

Control, and Server. The GUI, apart from the standard features,
handles image capture and processing. The server passes
information between the devices. Finally, the motor control
takes on accelerating stepper motors and deciding when to
move each and how far. The following sections will go into
detail describing the layout of our machine and how each part
functions.

Project Web Page
Code Repository
Manuscript received December 13, 2019

A. Graphical User Interface

We created a graphical user interface (GUI) as seen in Fig.
2 to integrate and interface with our software and hardware.
We did this with a Windows Form, coded in C#, using Visual
Studio. The purpose of this was so that our software would
operate seamlessly in a Windows environments. The high-
level language, C# gave us the means to integrate critical
components, such as Powershell and terminal commands, and
TCP listeners for interaction with our server. In its basic
functionality, the GUI allows a user to take an image file,
convert it to a monochrome, black-and-white image, customize
its contour threshold, generate G-code commands for the CNC
machine, and finally, send these commands to the server to
begin the printing process. A more in-depth discussion about
this process is as follows.

The GUI allows for a user to upload any image file for
printing. Users with webcams and external video devices
connected to their computers are also able to take pictures
within the GUI to be printed. They can also save images to
be uploaded again for later use.

Once loaded, the image can be fine-tuned by the user to
highlight the desired contours of their photo. This can be done
by using the threshold track-bar or the provided text-box if
the user wants to type in their desired threshold. The user can
also invert the contoured image to show outlines, rather than
a filled-in image. Figure 3 shows the default contour setting
being used on an image and Figure 4 shows the same image
with the inverted contour setting at the same threshold as the
original contoured image.

1) Image Processing Software: We used functionality from
the OpenCV (Open Source Computer Vision) library to per-
form our image processing. The library is originally written
in C++, but we used Python functions to interface with the
library. OpenCV contains functions for finding contouring
hierarchies in images. OpenCV uses machine learning to do
much of its image processing work [2]. In our GUI, we
gave the user the ability to alter the contour threshold of the
image and invert the contour style, as previously mentioned.
When the user adjusts the threshold in the GUI, our C# code
calls a Python script in Windows Powershell, with the desired
threshold passed to the python function. In our case, the
threshold refers to the depth of the pixels in an image. In
thresholding, each pixel value is compared with the threshold
value. If the pixel value is smaller than the threshold, it is set
to 0, otherwise, it is set to a maximum value (generally 255).
In a binary image file, all pixels included in the threshold are
set to 1, which means they show up in the picture as black
pixels, while everything else shows up as white. Finally, we
save the user’s desired contour image to a default file. The user
can then finalize their desired print by pressing the ”Generate

https://trello.com/b/7XVpqSGU/3992-proposal-class
https://github.com/EvanScullion/ECESeniorProject


UNIVERSITY OF UTAH ECE 4710: SENIOR PROJECT 2

Fig. 2: DaVinci-Bot Interface

Fig. 3: Default Contour in GUI Fig. 4: Inverted Contour in GUI

Printing Code” button.

B. G-Code Encoding

When the user chooses to generate the code to print their
image, our program calls a Python script called imgcode.py,
developed by M. ”Vidmo” Widomski, which we found on
GitHub. To convert the binary image to a G-Code file. G-Code
is the language commonly used to send X-Y-Z coordinates to
a CNC-style printing machine. There are many settings in the
functions we call in imgcode.py. Among these parameters are
an image file to be processed, a maximum horizontal width

for printing, and a scaling factor. After the G-code file is
generated, it is sent to the server for decoding.

C. GUI Challenges

We preset all of the conditions of our G-Code generator for
the user in the interest of printing time. The G-Code convert-
ing code that we used was only capable of creating raster-
style images, which are time consuming to print. Longest-
path, smooth curves are much faster to print. It is easy to
linearize an image with defined curves into a raster-style plot.
However, converting from raster to curves is challenging.
The process for that involves even more computationally



UNIVERSITY OF UTAH ECE 4710: SENIOR PROJECT 3

expensive, exponential-time, path finding algorithms. Again,
in the interest of processing time, we decided that a linear-
time algorithm to generate raster images would simplify our
problem. In general, pixel-by-pixel image processing and g-
code generation was very expensive, depending on the size
of the image. We had even loaded images that took up to 30
seconds to process. G-Code for an image with 1000 x 1000
pixel dimensions could generate around 100,000 lines of G-
Code. We found a loophole around this by re-scaling the user’s
chosen image as soon as they uploaded it. Though the details
of the image weren’t as sharp, for the purposes of printing,
it was negligible. This alone cut our processing time down
to milliseconds to find contours, and around 3-7 seconds to
generate G-Code.

D. WiFi Server

We used an ESP32 Sparkfun Thing Plus set up as an
access point to allow for communication without the need
for an external network. The server to handle data transfer
was implemented on this device in C/C++ with libraries used
for control of the TCP socket and internal memory. The
client was coded on the PC in C# and integrated into the
GUI. When called, the client would take a predetermined file
(commands.gco) containing GCode and, once the server sent
the allowed number of bits, would send the GCode line by line
until either the end of the file or the allowed number of bits
was reached. The allowed number of bits was hard coded in
memory and represented the amount of data able to be stored
in the internal memory of the server. If no more bits were
allowed the server would pause writing to memory and begin
sending the instructions to the Arduino over UART one by
one, waiting for an acknowledge signal after each one was
completed. Once the transfer was complete the connections
were all closed and the ESP32 memory was wiped by writing
zeros to each point in memory, this also reset the memory to
allow for new writes.

E. CNC-Style Machine

Our original plan was to fabricate a frame using aluminum
t-slot rails and acrylic. We had hoped to use a rack and pinion
actuation mechanism for the X and Y movement. Due to
several setbacks we were forced to use prefabricated pieces for
the basis of the bot. This was acceptable as we were instructed
to remember that we are not mechanical engineers so the
frame was not to be a priority or large focus. We used the
prefabricated frame and attached our own NEMA 23 stepper
motors which gave us a larger margin for current allowance
and stepping rates. We also added switches to the rails that we
set up to trip when the device moved to its limits to prevent
damage. Our program would ”home” the device when turned
on, move to the upper left limit, and set its position. If for
some reason it lost its place and attempted to move beyond
the ends of the drawing area the switch would kill the program
and the power to the motors by sending a signal to the enable
pin on each driver. The drawing area was fabricated from 1

4”
acrylic with a laser engraving of a parody of the Vitruvian
Man[3].

Evan designed a box-frame in FreeCAD to be printed by
a 3D printer for the bot to rest on and to allow for easier
wire routing. The box was divided into four pieces to fit onto
the available printers and printed using standard black PLA
filament.

Peripheral circuits were placed on breadboards to save on
cost, manufacturing time and to make them more flexible
if changes needed to be made. The ESP32 requires a step
down circuit for the UART connection to the Arduino as
it takes 3.3V and the Arduino uses 5V for IO. This circuit
uses a cross connected pair of BJTs which would pull the
opposing transistor into saturation to prevent exceeding the
desired voltage on each side[4]. The solenoid requires a high
current which none of the IO can handle so we used a 10A
relay that is controlled by the Arduino. The high current is
provided by a wall adapter with a standard barrel connector.
The most important peripherals are the stepper drivers, we
used the Pololu TB67S249FTG compact drivers with added
heat sinks to remove waste heat. Each controller handled
stepping and direction for a single motor as well as stepping
down the current running through the coils to allow us to run
the device at 28V without destroying the stepper motors. The
benefits of running the steppers at a higher voltage being that
motors can step faster without losing steps and rotor wobble
between steps is reduced.

The power supply we used was a specialty power supply
that would provide between 28V and 36V with a total of 9A
of current. This single power supply provided power for the
steppers in the X and Y direction and the Z direction. We had
a small hiccup where we damaged the Z driver due to loose
connections to the stepper and were not able to use it in the
final product. Luckily this motor was only going to back the
solenoid away from the drawing surface when powering down,
it was not necessary for normal operation of the device and
could safely be removed from the scope of the project.

F. G-Code Interpreter

Instructions passed to the Arduino are formatted as G-
Code with fields for X and Y in addition to the type of
instruction. The Arduino takes in an instruction from UART
and parses it based on the type of instruction given in the
”G” field. Depending on the case, it will perform the required
calculations needed for moving the motors in the desired
manner. The method will then call the move method from the
stepper library, stepper motor.h, to move the corresponding
motor the specified amount of steps.

G. Arduino and Motor Control

The micro controller we used was the Arduino Mega 2560.
This one was chosen primarily due to the abundance of digital
IO and the speed of the processor. Many of the digital IO
were used to handle boundary switches as an output and
an input were needed for each. The stepper drivers required
a connection for step, direction and an enable signal. The
Arduino also provided power for the logic on the drivers.
A single UART signal was connected to the ESP32 through



UNIVERSITY OF UTAH ECE 4710: SENIOR PROJECT 4

Fig. 5: Level shifting circuit for UART communication be-
tween ESP32 and Arduino Mega 2560[4]

the level shifting circuit shown in Fig. 5 for accepting and
acknowledging commands.

We controlled the speed and acceleration of the motors by
using a software interrupt to trigger at different timed intervals,
depending on which motor was to move next. This was done
by iterating through a list of the motors and checking to see if
they needed to step. After a motor stepped, we would check
to see if one or both of the boundaries were triggered and
or if we had taken the required amount of steps. We would
then calculate a new value to count to and store it into the
compare register of the CTC interrupt. This was all handled
in the Main.ino file.

III. CONCLUSION

The machine functioned exactly as specified in our proposal,
we were able to take in a picture from the camera and raster
draw it on a piece of paper. The solenoid functioned perfectly
and better than expected when designing the device but the
Z stepper broke down prior to the final demo, this part was
not in the original specifications though so it was discarded.
One issue we ran into on demo day was that a power setting
in Windows 10 timed out the connection to the server which
would occasionally cause the GUI to stop sending commands
to the server if the image was large enough. Unfortunately
this small issue was not resolved as it was not in our code but
depended entirely on the system running the GUI.

In the end we were able to achieve our original goal, albeit
without some of the stretch goals and without implement-
ing rack and pinion. Operation was smooth without errors
or exceptions and no excessive heat was generated in the
motors, drivers, or power supplies. The resulting images were
distinctly identifiable and had an effect similar to that seen
in cross hatched images. Overall this project was a resound-
ing success and demonstrated our combined knowledge and
expertise in our area of study.

REFERENCES

[1] “I, robot,” 2004.
[2] “About,” 2019. [Online]. Available: https://opencv.org/about/
[3] juzmental, “Vitruvian rick.” [Online]. Available: https://www.deviantart.

com/juzmental/art/Vitruvian-Rick-439228720
[4] J. Hagerman, “Two transistors form bidirectional level translator.”

[Online]. Available: http://www.hagtech.com/pdf/translator.pdf
[5] D. Yan, J. Wang, M. Xu, and G. Lian, “Accurately counting algorithm

of incremental rotary encoder,” Advanced Materials Research, vol. 468-
471, pp. 225–228, 2012.

[6] J. Miley, “Drawing machine’s scintillating work of art,” Interesting En-
gineering, Mar 2018. [Online]. Available: https://interestingengineering.
com/drawing-machine-creates-scintillating-work-of-art

[7] G. Bruney, “Sketch intricate designs with a hand-cranked drawing
machine,” Mar 2016. [Online]. Available: https://www.vice.com/en us/
article/aenqq4/joe-freedman-drawing-machine-cycloid

[8] 4848 4x4 CNC Router. ZenbotCNC, 2019. [Online]. Available:
https://www.zenbotcnc.com/4848-4x4-CNC-Router- p 20.html

[9] M. Budimir, “Rack and pinion drive system: What is it?”
Oct 2017. [Online]. Available: https://www.motioncontroltips.com/
what-is-a-rack-and-pinion/

[10] M. Starr, “Robotic printer paints portrait of artist in his own
blood,” Aug 2014. [Online]. Available: https://www.cnet.com/news/
robotic-printer-paints-dot-matrix-portrait-of-artist-in-his-own-blood/

https://opencv.org/about/
https://www.deviantart.com/juzmental/art/Vitruvian-Rick-439228720
https://www.deviantart.com/juzmental/art/Vitruvian-Rick-439228720
http://www.hagtech.com/pdf/translator.pdf
https://interestingengineering.com/drawing-machine-creates-scintillating-work-of-art
https://interestingengineering.com/drawing-machine-creates-scintillating-work-of-art
https://www.vice.com/en_us/article/aenqq4/joe-freedman-drawing-machine-cycloid
https://www.vice.com/en_us/article/aenqq4/joe-freedman-drawing-machine-cycloid
https://www.zenbotcnc.com/4848-4x4-CNC-Router-_p_20.html
https://www.motioncontroltips.com/what-is-a-rack-and-pinion/
https://www.motioncontroltips.com/what-is-a-rack-and-pinion/
https://www.cnet.com/news/robotic-printer-paints-dot-matrix-portrait-of-artist-in-his-own-blood/
https://www.cnet.com/news/robotic-printer-paints-dot-matrix-portrait-of-artist-in-his-own-blood/

	Introduction
	Main Project Components (Top-Down)
	Graphical User Interface
	Image Processing Software

	G-Code Encoding
	GUI Challenges
	WiFi Server
	CNC-Style Machine
	G-Code Interpreter
	Arduino and Motor Control

	Conclusion
	References

