
1

Project Report: Autonomous Flight & Mapping
Mike Atwood David Ord Alex Vasquez Jacob Zenger

https://dronebot.home.blog/

Abstract—Our project achieves autonomous drone flight by
using PID feedback loops, interfacing with various peripherals
and sensors, and performing data transformations to control a
quadcopter. Visual simultaneous localization and mapping (VS-
LAM) from a stereo camera to achieve autonomous localization
was developed and demonstrated by achieving image registration
and point-cloud creation. Initially Angle of Arrival capabilities
of Bluetooth 5.1, were to be included. Autonomous indoor
mapping and localization has numerous applications to safety
and services. Current systems are often inefficient, inaccurate,
and their usability is limited by the need for beacons. The
Bluetooth 5.1 standard introduces a solution by pairing angle of
arrival information and distance measurements. When combined
with 3D mapping, the capabilities of Bluetooth 5.1 enable the
development of a drone which can determine a path to an object
within a large space. The proposed project intended to prove this
concept by developing a drone which uses VSLAM to create a
3D representation of a space, such as the floor of a building.

Index Terms—Simultaneous Localization and Mapping, drone,
autonomous, Angle of Arrival, PID feedback-loop

I. INTRODUCTION

The potential for autonomous vehicles is extreme, ranging
from improvements in public safety to economic growth.
Google, Tesla, Amazon, and Uber are all developing au-
tonomous solutions for many applications. Autonomous cars
have the potential to increase road safety, lower transportation
costs, increase economic growth, and decrease commute times.
Uber could utilize autonomous vehicles to introduce lower
fares. Autonomous drones have uses in delivery, tracking,
localization, security. Amazon could use autonomous drones
for instant local delivery or within a distribution warehouse.
The proposed project combines existing technology with the
capabilities of the latest Bluetooth standard to develop an au-
tonomous drone which uses a novel method to locate objects.
The project scope includes Bluetooth communication, wireless
communications, drones, motors, motor control, embedded
systems, collision detection sensors, autonomous flight control
systems, and more.

Other autonomous drone systems have been built. The mili-
tary uses unmanned aerial vehicles. Commercial drones allow
users to initiate autonomous aerial maneuvers. The footage
focused Skydio R1 performs autonomous aerial maneuvers
which yield interesting video recording effects [1]. Amazon
is also working on automated drone delivery systems which
they claim will deliver packages in thirty minutes or less [1].

Similarly, the field of localization is receiving a lot of at-
tention because of the proliferation of smart home technology.
Automation systems can benefit greatly from the ability to
know where you are. For instance, lighting systems could
be designed to turn on lights only for the room you are in.
Security systems could be set to automatically arm when you

leave your house. Current localization techniques include geo-
fencing and beacon-based positioning systems. However, these
struggle with inefficiency and inaccuracy. The introduction
of the Bluetooth 5.1 standard allows for sub-1m localization,
promising to improve the existing systems [4].

This project encompasses the concepts of autonomous flight,
localization, and 3D mapping to develop a drone which can
locate an object using a Bluetooth-based positioning system.
The goal is to provide a basis for accurate, efficient indoor
positions systems that can be used for smart home automation
as well as a variety of other applications.

The proposal will address the project in the following order:
Section II will provide background information on the areas
of study involved in the project; Section III will discuss the
proposed body of work; Section IV will address important
technical considerations and detail many of the chosen com-
ponents; Section V will give a list of all components used in
the project; Section VII will propose a timeline for the project;
and, Section VIII will summarize the proposal.

II. BACKGROUND

This project involves three major fields of study: au-
tonomous flight, localization using Angle of Arrival (AoA)
estimation, and visual simultaneous localization and mapping
(VSLAM).

A. Autonomous Flight

Autonomous flight will be controlled through software
flashed to a microcontroller flight board attached to the drone.
The firmware will send signals to the electronic speed con-
trollers (ESC), which will drive the motors. The motors turn
the propellers that produce lift and move the drone in different
directions. Autonomous flight allows the drone to hover and
move stably without the need of a human pilot. The spin
pattern of the propellers is shown in Fig 1. The firmware
will eventually be controlled by pathfinding algorithms. Path
finding algorithms will control where the drone moves to,
such as to a beacon. Proximity sensors will be used to gather
information on the drones environment for the path finding
software.

Flight stabilization is achieved using an inertial measure-
ment unit (IMU). An IMU generally consists of an accelerom-
eter, gyroscope, and barometric pressure sensors. The sensors
allow the MCU to track all the parameters necessary to stably
fly the drone.

B. AoA-Based Direction Finding

Angle of Arrival (AoA) estimation is commonly used in
signal direction finding. It is a method of determining the angle

https://dronebot.home.blog/


2

Fig. 1. Propeller spin patterns

at which the transmitted signal arrives at the receiver. It utilizes
a single transmitter (TX) and a receiver (RX) consisting of
multiple antennae, as shown in Fig 2.

The receiver requires multiple antennae to simultaneously
read multiple phase samples. It computes the phase differences
in the samples to estimate the signal direction using an
algorithm such as multiple signal classification. Techniques
must be applied to eliminate the effects of multipathing. A
3D array of antennae allows for true 3D measurements of the
azimuth and elevation angles [4]. We will use AoA estimation,
added to the Bluetooth 5.1 standard, as input to our path
finding system.

AoA estimation has been added to the Bluetooth 5.1 stan-
dard, so that will be medium of choice. The receiver will
utilize a Bluetooth module capable of AoA and an antenna
array to accomplish the direction finding.

C. Collision Detection

Our priority is to implement autonomous flying and beacon
tracking in an open space, such as outdoors or large open
indoor space. We would also like to add collision detection

Fig. 2. Angle of Arrival TX/RX configuration. Image from SiLabs [4]

functionality to our drone. A drone with collision detection
would be able to operate in smaller rooms where it might
bump into walls, a ceiling, tables, light fixtures, and more.
We will add collision detection sensors to the drone.

We could use ultrasonic, infrared, camera, or light detection
and ranging (LIDAR) sensors for collision detection. The
sensor or sensors we use will have to be effective in quickly
detecting objects to allow time for the drone to prevent
collisions. The listed sensors vary in effectiveness and cost,
which will factor into the design of the system.

D. Pathfinding

Information from the Bluetooth and collision detection
sensors will provide data to the pathfinding system. The
pathfinding system will consist of search algorithms that
compute a path based off sensor data. We will try to implement
the pathfinding system on the drone’s MCU, but we may
also offload this computing task to an external machine. If
we offload the computation, we will need a communication
channel between the drone’s MCU and the external machine.

E. Visual Simultaneous Localization and Mapping

Visual Simultaneous Localization and Mapping (VSLAM)
allows for the simultaneous calculation of the cameras position
and the creation of an environment map in the form of a
point cloud, such as the one in Fig 3. There are five modules
which make up vSLAM: initialization, tracking, mapping,
relocalization, and global map optimization [6]. Initially, the
robot constructs a portion of the environment to determine
an initial map. Tracking and mapping can then be performed
in real-time by comparing images seen by a depth camera.
Relocalization refers to the ability of the robot to determine
its localization when a swift movement would cause it to lose
its position. Errors are reduced by the process of global map
optimization [6].

III. IMPLEMENTATION

Our project consisted of building a quad-copter from specifi-
cally selected parts to fit our specifications. The drone motors
were controller by a flight controller running the Betaflight
software. The project involved the selection of a control unit
to run our flight and visual programs that could connect
the rest of the equipment. Our flight controller would not
directly control the motors, but interface with them via the
flight controller running Betaflight. The flight controller was
connected to the motors using ESC’s. A custom SBUS client
had to be developed to interface with the flight controller
running Betaflight.

Software had to be developed to connect to and read data
properly from the time-of-flight distance sensor. Software had
to be developed to connect to and read from the camera sensor.
To house the drone equipment, a case was 3d printed which
required research into the 3d printing process and the design
of a model. An Android application was developed to add
additional wireless control to the drone, and specifically to
initialize the main flight routine. The team developed a multi-
threaded software to run various programs in parallel, such



3

Fig. 3. Direct SLAM point cloud. Image from Imperial College London.

as gathering sensor data, performing calculations on that data,
and using those calculations to perform some action. VSLAM
was researched and image data manipulation was developed,
such as image registration and point-cloud creation.

A. Quadcopter & Flight Controller

For our drone frame we used the iFlight IX5 V3 Hybrid FPV
Racing Frame. We chose the CL Racing F45 Flight Controller
because we could load Betaflight onto it. At the beginning
of the project we experimented with the Betaflight code and
attempted to modify it directly to load software onto the flight
controller. This proved to be difficult and we decided it would
be easier to develop on a separate board. We would have had
to do this anyways to communicate with the Intel camera, but
we could have continued to try to implement custom flight
control on the flight controller itself.

We chose 5x4.5 inch propellers and the 2207-2300 KV-G
Champion Series Gold Edition Motor which were chosen to
provide enough lift for the drone and all the equipment. We
used the Turnigy 2200mAh 3S 25C Lipo Pack to power the
drone and flight controller.

B. Jetson Nano Setup & Configuration

One of our first hardware picks was the Intel Realsense
D435i Camera. The camera uses a USB 3 connection. This
constraint narrowed our options for our board. We chose the
NVIDIA Jetson Nano Developer Kit because of its USB 3
ports and GPU.

The Jetson Nano Developer Kit is a small computer board
made by NVIDIA. Is is run using an Ubuntu image that was

flashed onto an sd card. All of the computing for the project
is written in C++ and compiled and executed on the board.

To communicate with the board, a Wi-Fi card was installed
into the board’s M.2 Key E slot. The chosen Wi-Fi card is
the Intel Dual Band Wireless-AC 7265 802.11ac, Dual Band,
2x2 Wi-Fi + Bluetooth 4.0 (7265NGW). This card was chosen
for probable Bluetooth integration with the Jetson Nano, but
the Bluetooth was not implemented in the final design due
to lack of support in the market from being a new standard.
An IPEX MHF4 Antenna was installed on the Wi-Fi card to
enable wireless communication. The Jetson Nano then had to
be configured to create a wireless hot-spot, which allowed the
team to access the board through ssh.

When the board was connected to a wired network, remote
access to the board was also made possible through ssh
through port forwarding. This was useful in the early stages of
the project to enable the team to work remotely, but became
less useful near the end of the project when testing flight was
necessary, and a wired connection could not be used.

The Jetson Nano interfaced wirelessly to an Android appli-
cation and computer program by being set as a Wi-Fi hotspot.
The computer and phone would need to be connected to the
Wi-Fi, then would communicate to our program on the Jetson
Nano via an IP port to send messages.

When initially attempting to read data from the Intel Re-
alsense D435i Camera, we ran into a problem where we were
unable to properly read IMU frames from the camera. After
much researching on how to connect the Jetson Nano to the
Intel Realsense, we saw many people having issues connecting
some of the Intel cameras specifically to the Jetson Nano. We
attempted one solution which was compiling and applying
kernel patches to successfully communicate with the Jetson



4

Nano.

C. SBUS Protocol

The communication between the Jetson Nano and the flight
controller was done via a UART connection. Normally, the
flight controller is controlled using a radio remote. Radio
communication works by connecting a radio receiver module
to the flight controller. The radio receiver must be paired to
the remote control. Communication from the radio receiver
to the flight controller is done via a serial UART connection
as the underlying protocol. It is a 100,000 baud rate, 8E2
configuration, and inverted logic connection. An actual SBUS
packet consists of twenty-five bytes which sends the values
for sixteen eleven-bit ”channels” [5].

For the flight controller, some channels were configured
to set the throttle, roll, pitch, and yaw values. Additional
channel values were sent to control the ”arm” mode of the
flight controller which enabled the drone to drive the motors
using the direction values received. Using a protocol guide,
we developed routines to take an array of integers used to
represent each channel value we wanted to send and wrap
those values into the corresponding bytes and order needed to
send to the flight controller. One of the encoding steps we had
to implement involved packaging channel values of eleven bits
into eight bit packets [5].

To configure the Jetson Nano for this serial connection
we used the termios and termios2 structs. These allowed us
to set the correct serial configuration and non-standard baud
rate. We did not invert the serial values because we found
a configuration setting on the flight controller that we were
able to set via the Betaflight console and loading the updated
setting onto the flight controller board. Initially we used a
USB-to-serial cable, but later transitioned to using a built
in serial pin on board the Jetson Nano. We were able to
access this pin in the same way we did the USB cable, by
reading from the corresponding ”/dev/ttySx” file. In addition,
we also implemented various helper routines to easily change
the values of flight directions, such as pitch and throttle.

D. Time-of-Flight Sensor

We used the TFMini Micro LiDAR Module to detect the
distance from the drone to the ground. This distance sensor
is actually a time-of-flight laser sensor. Initially we decided
to use the I2C protocol to communicate from the TFMini to
the Jetson Nano. The Jetson Nano has two pairs of SDA/SCL
I2C pins. We began to implement the logic to connect to the
sensor, but were unable to ever connect and get proper data.
We are unsure whether this was a I2C implementation or other
issue.

Next we attempted to the UART version of the TFMini.
Initially we had various issues with the Jetson Nano itself
when connecting the sensor. For example, sometimes the
Jetson Nano would not boot or Wi-Fi would not turn on. We
are unsure of the exact issue, but it was possibly a power
problem. We then tried connecting to a different serial pin
on the Jetson Nano and that was more successful. Looking
back, while testing we had intermittent Jetson Nano problems

where its Wi-Fi would not activate. Perhaps the sensor was a
contributing factor.

The UART TFMini sends data in a series of bytes such
as distance low byte and distance high byte. These values
need to be kept track of and added together to obtain the
full value. In addition, the TFMini sends a checksum value to
validate the received data and signal strength data [2]. For this
UART connection we used the LibSerial open source library
to configure the serial port, but developed all the code to read,
parse, and package the individual byte data from the TFMini
ourselves [3].

At first we had a problem where we would receive the
same data from the sensor regardless of the height. We also
developed routines to flush the serial port and logic to execute
re-reads when the sensor could not be properly read from to
fix this problem.

E. Realsense D435i Camera

The Intel Realsense D435i is a stereo camera which pro-
vides color and depth frames through a USB-C interface. The
camera also contains an internal inertial measurement unit hav-
ing an accelerometer and a gyroscope. Intel provides a library,
librealsense, which has an API for getting frames from the
camera and manipulating them as necessary. Librealsense is
published in an apt repository, so installation on the Nano was
fairly straightforward. However, a kernel patch and compiling
was needed to add compatibility for the D435i.

Initial testing of the camera was done using an application
provided by Intel called realsense-viewer. Realsense-viewer
allowed us to view each type of frame, adjust the resolution,
and familiarize ourselves with the camera in general. From
there, we implemented a series of small programs to perform
basic tasks. Those programs formed the basis for what we later
did for the 3D mapping.

F. 3D-Printed Payload

We used Autodesk Inventor to design the box which carried
the payload for the drone. It was designed in two pieces: a lid
and a base. It was designed in this way to allow for easy
removal of the base when access to the components inside
was needed.

The lid was designed such that four screw holes were used
to attach the lid to the bottom of the drone, in the center. The
base was then attached to the lid at the corners. The base was
designed to provide sufficient support to the sensors, batteries,
and the Jetson Nano so as to not allow damage.

The box and base were 3D printed out of PETG using the
Lulzbot Taz 6 printer in the Senior Hardward Lab. The first
version of the box took roughly 36 hours to print. Subsequent
versions could be completed in just over 12 hours.

Using a 3D printed box in this manner allowed for easy
prototyping. However, because the boxes were easily broken,
considerable delays were suffered after each crash.

G. Mobile Phone Application

An Android app was developed to start and stop the main
program run on the Jetson Nano board. The intended purpose



5

of the app is to give the user a way to switch the program
on and off without needing to ssh into the board to start and
stop the program. We also had the idea of a program which
would run as an independent service in Ubuntu Linux, and the
mobile application would then communicate with this service
to start the quadcopter.

As a precautionary measure, to mitigate the risk of losing
the all components in a crash, the program was not run as an
independent service so that the quadcopter would stop running
if it lost connection with the ssh session running the main
program. The mobile application, however, still served as the
starting and ending signals for the end user.

The program was written and compiled using Android
Studio. The main buttons that were used are the following:

• CONNECT TO JETSON - used to establish a socket
connection with the main program running on the Jetson
Nano board

• ARM - used to ”arm” the quadcopter, which is a neces-
sary step in enabling flight

• START - used to start the quadcopter’s flight routine
• FORWARD - used to change the state of the quadcopter

to flight
• REVERSE - used to tell the quadcopter to decrease

throttle and land

Signals were sent to the Jetson Nano with each button press
over an established socket connection and using the JSON
message format. The phone would need to be connected to
the Jetson Nano’s wifi.

H. Drone Flight Code

The control software was based on a multi-threaded model
using the Boost thread libraries. The main program thread
initializes necessary interfaces, creates several worker threads,
and then runs the TCP server, which blocks execution.

Angle calculation, hover stabilization, frame polling, throttle
control, and SBUS communication were all done on separate
threads. Boost mutexes were used to synchronize the data.

1) WiFi to Android Application: The android app connects
via Wi-Fi to the Jetson Nano, and establishes a socket connec-
tion with the main server code. It then sends messages to the
main server code in the JSON format. The main server code
uses a JSON library to decipher the messages and retrieve the
message type in order to change it’s states.

2) Communication to Betaflight Flight Controller: The
multi-threaded program contained one thread to send data to
the flight controller via serial connection. This thread would
read data under a mutex system and send that data to the flight
controller. The thread would send channel values to control
yaw, pitch, roll, throttle, and the ”arm” value.

3) Drone Orientation: The orientation of the camera was
derived using the internal IMU. X and Z angles are initialized
using the accelerometer. The Y angle is set to π by default.
For each frame received from the camera, the orientations
are updated using the gyroscope. Accelerometer input is used
to filter noise from the gyroscope and smooth the angle
estimations.

4) Drone Height: Another thread in our flight control
program is the height control. The height thread would set
up the serial connection to the TFMini sensor and begin a
loop to continuously read data from the UART connection.
This would read data from the distance sensor pointed at the
ground to get the drone height from the ground. The thread
would then take the raw TFMini data and parse it correctly to
produce distance and signal strength values. The thread uses a
state machine controlled with flags to keep track of byte order.
The final values would then be saved in global variables. Locks
were used to safely read and write to the height variables.

To control the height of the drone, we used the height data
from the TFMini to control the throttle values we would send
to the flight controller. We initially implemented a constant
value feedback loop: while the height was less than the desired
height increase throttle and vice versa. We later implemented
a PID control for the height. The height sensor has a limitation
of only producing valid data from a minimum of thirty
centimeters. The minimum height changed the constraint for
our set point height.

We also implemented a landing routine once the drone
reached a hard-coded height, though located in another portion
of the program.

5) Hover Stabilization: PID controllers were implemented
to control the pitch and roll of the drone. We experimented
with various methods for hover stabilization. The approach
we ended with was setting a constant set point angle for
the drone’s pitch and roll angles. The idea was finding an
angle values, which were calculated from sensors on the Intel
camera, which would keep the drone steady.

The program and drone then would correct until we sta-
bilized at those values. Additionally we experimented with
limiting the range that the values for pitch, roll, and throttle
could reach. The value limits were extremely helpful in fine
tuning the control of the drone and avoid huge swings of values
that could completely knock the drone off course. We also ran
into the issue of limiting those values so much the drone would
reach a maximum and still be unable to physically correct. We
had to experiment with these values.

We had many issues tuning our PID system. For example,
we ran into an issue that when the drone was on the ground,
an error would build up in certain angle direction. With the
drone tilted in that direction, throttle would increase and the
drone would take off in that direction. Due to the constraints
of our space, sometimes the drone would not have the space
and time to correct in another direction.

We also struggled with the drone correcting quick enough.
While we disagreed whether this issue was due to the camera,
some of the group believed the drone angles calculated from
data received from the camera were delayed which means the
drone would perform feedback based off of an incorrect angle.
The drone orientation that lead to a hover was determined
experimentally and used as a set point. Trial and error gave
proper values for the gain of each term in the PID controller.

Researching PID feedback loops, implementing, and tuning
was were we spent many nights working on.

6) Flight and Landing Routine: We developed a flight
routine in our program. Once the drone had reached a hard-



6

coded height, from forty to sixty centimeters, we changed the
set-point angle. The program would change the angle for the
drone to tilt slightly forward and produce forward motion.

The team experimented with various techniques to land the
drone. Routines were triggered based off when the drone had
reached and certain height and a time stamp. After the drone
hit the target height a time stamp would be recorded. The
flight control program would check that time stamp against the
current time and would modify the drone throttle. For example,
4 seconds after the drone reached sixty centimeters, the load
would start to land.

One routine we implemented continuously decreased the
throttle of the drone until it reached a floor value. Another
routine did the same, but had an additional timer, which after it
would expire, the throttle would be decreased even more until
reaching zero. In the end we changed the routine to a routine
that after the drone reached a certain height and a constant
amount of seconds passed, the throttle would be decreased to
a constant value below the value needed to maintain height.
The throttle at that value would make the drone descend.

I. Mapping

It is possible to create a 3D point cloud by stitching together
multiple frames taken with a stereo camera. This is done using
an algorithm called iterative closest point, or ICP.

First, depth frames are taken using the Realsense D435i
camera. These frames are converted in a set of 3D points using
a library called Point Cloud Library, or PCL. PCL provides
a large set of routines for performing calculations on point
clouds.

Once the point clouds have been obtained, they are filtered
using a Voxel Grid. The Voxel Grid filter takes all of the points
within a cube of a given size and averages them into a single
point. This effectively down-samples the point cloud so that
calculations can be done more quickly.

After the filter has been applied, ICP is run on the two
frames. ICP first determines a set of critical points in the
overlapping frames. These are points by which the frames
should be aligned. Typically, they are a feature such as window
or door, but the selection is done behind the scenes. Once
critical points have been obtained, a rigid transformation is
calculated over a number of iterations until a transformation
is obtained which brings the frames close enough within a
given tolerance.

Once the transformation is obtained, it is applied to one of
the frames to bring it into the coordinate system of the other.
The point clouds can simply be appended to create the larger
image.

We were able to get this process to work to great effect.
However, in the beginning we were seeing odd warping of
the images. It was discovered that ICP is effective only with
transformations which are relatively small. If the difference
between frames is too large, the transformation returned by
ICP is deficient. As long as we are sure to take consecutive
frames which are very close to each other, the algorithm runs
quite well. Any further distortion is caused by limitations in
the operation of the D435i camera.

IV. PROJECT COMPLETION

There were three components proposed initially: au-
tonomous drone flight, simultaneous localization and mapping,
and Bluetooth-based tracking. We were able to make consid-
erable progress on the first two objectives.

We implemented a multi-threaded C++ application to inter-
face with various sensor, execute computations on that data,
and modify drone flight parameters to autonomously control
the drone. The research and implementation of autonomous
flight took most of our time. Autonomous flight involved
setting up various components, interfacing with various sensor,
and creating a complex program to integrate it all. Many prob-
lems were encountered here. We were unable to implement
some features such as collision detection and path finding due
to problems with computing camera data quick enough.

The Android application was completed to control the
drone.

We were able to implement the VSLAM but never integrated
it with the drone. The time that it took to capture and process
each frame would slow down the drone and make it impossible
to fly. In addition, because of how much the drone would move
between capturing each frame the Iterative Closest Point (ICP)
method would be unable to align two frames with each other.
Each frame could only be around a degree change from its
previous to work. We split the code to complete this into three
portions. The first portion is the capture portion which just
continuously takes frames and then saves them all at the end.
The second portion is the align portion which loops through
all of the frames and aligns frames with the frame taken before
it until they are stitched together. The third portion is just a
display function which visualizes any PCL cloud for the user.

3d printing was researched and used to print a case to house
our components from a model.

Our Bluetooth objective was dropped due to lack of Blue-
tooth 5.1 sensor supply.

V. PROJECT RETROSPECTIVE

The Bluetooth tracking would have been based on the
Bluetooth 5.1 standard which was finalized in the spring of
2019. Unfortunately, the development timeline for commer-
cially available products lagged too far behind. We are still
unable to find the modules we would have needed to perform
tracking.

Instead of directly controlling the drone’s motors using
pulse-width-modulation, we opted to use Betaflight, an open-
source drone control software. Betaflight abstracted the fine
motor control we would have had if we were connected to the
ESC’s. While Betaflight may have gotten the team to begin
control the motors more quickly, we lost the fine motor control
we would have had otherwise.

We use the Intel Realsense D435i camera to detect changes
in angle. From the camera we were able to read accelerometer
and gryoscope data. Unfortunately this data would fluctuate so
much it made it more difficult to control the position of the
drone.

The stability of the drone was controlled using PID feedback
loops to change the values sent to the flight controller to



7

control yaw, pitch, roll, and throttle. We experimented with
various PID values to better stabilize the drone. If we had
more time, the group could have additionally spent more time
analyzing this stability problem to better calculate PID values
and even use more sophisticated techniques to analyze values
and their results.

If we were to create this drone again we would add an Intel
Realsense T265 camera which has the ability to track location
in the x,y, and z directions from its starting point. This would
have made drone stabilization easier because you could use the
PID feedback loops on the locations instead of angles which do
not always act in the desired way. This would also have made
VSLAM more possible because instead of relying on the ICP
method, which requires that two frames are very close to each
other already, we could have used the locations from the T265
and the angles from the D435i to complete the transforms from
one frame to the next. This would eliminate the need for the
camera to take frames and process all of the pixels in them
which took an extremely long time even running on a laptop.

VI. CONCLUSION

Our team was able to construct a drone from curated parts
to fit our requirements and specifications. We purchased drone
motors, propellers, and frames specifically for our estimated
weight. We were able to select equipment such as sensors to
also fit our requirements, specifically a time-of-flight distance
sensor, camera sensor, and flight controller peripheral. The
team assembled the drone and soldered ESC’s, motors, jumper
wires, and connectors to the flight controller.

To physically house the equipment, we researched, de-
signed, and printed various iterations of plastic cases. Using
this equipment, we were able to construct a drone capable
of autonomous flight and control by implementing a multi-
threaded application in C++. This program interacted with
various peripherals such as distance, camera, IMU, and flight
control sensors and boards. Data from peripherals had to be
read and parsed correctly to be used. For example, we had to
implement our own SBUS client to correctly send data to the
flight controller. We implemented a state machine to read data
from the time-of-flight sensor.

The program performed various PID feedback loops to
physically control control drone. The team researched, de-
signed, and 3d printed a custom made case to hold the
equipment. We were also able to implement various programs
using the Intel Realsense D435i camera such as composing, or
registering, camera images and generating point clouds from
them.

REFERENCES

[1] Amazon.com, Inc. Amazon Prime Air. https://www.amazon.com/
Amazon-Prime-Air/b?ie=UTF8&node=8037720011. Online. accessed
Mar 2019.

[2] Benewake (Beijing) Co. Ltd. TFmini Infrared Module Specification.
https://cdn.sparkfun.com/assets/5/e/4/7/b/benewake-tfmini-datasheet.pdf.

[3] crayzeewulf. Libserial. https://github.com/crayzeewulf/libserial.
[4] S. Lehtimaki. Bluetooth Angle Estimation for Real-Time Locationing.

Silicon Labs, 2018.
[5] Robotics and Perception Group. SBUS Protocol. https://github.com/

uzh-rpg/rpg quadrotor control/wiki/SBUS-Protocol.

[6] H. Uchiyama T. Taketomi and S. Ikeda. Visual slam algorithms: a
survey from 2010 to 2016. IPSJ Transactions on Computer Vision and
Applications, 2017.

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://cdn.sparkfun.com/assets/5/e/4/7/b/benewake-tfmini-datasheet.pdf
https://github.com/crayzeewulf/libserial
https://github.com/uzh-rpg/rpg_quadrotor_control/wiki/SBUS-Protocol
https://github.com/uzh-rpg/rpg_quadrotor_control/wiki/SBUS-Protocol

	Introduction
	Background
	Autonomous Flight
	AoA-Based Direction Finding
	Collision Detection
	Pathfinding
	Visual Simultaneous Localization and Mapping

	Implementation
	Quadcopter & Flight Controller
	Jetson Nano Setup & Configuration
	SBUS Protocol
	Time-of-Flight Sensor
	Realsense D435i Camera
	3D-Printed Payload
	Mobile Phone Application
	Drone Flight Code
	WiFi to Android Application
	Communication to Betaflight Flight Controller
	Drone Orientation
	Drone Height
	Hover Stabilization
	Flight and Landing Routine

	Mapping

	Project Completion
	Project Retrospective
	Conclusion
	References

