
1

Flight Simulator Chair
Proof of Concept

Dezeray Kowalski, Jamison Bauer, John Young, and Seth Kingston

Abstract—Our mission is to provide a unique, immersive, and
enjoyable arcade gaming interface. It provides a more realistic
and exciting experience through unique physical interaction.
Unlike similar creations, we aim to prove an idea for this
new gaming experience that could become an affordable arcade
product.

I. INTRODUCTION

AS video game-supporting technology has improved over
the years, new and unique gaming interfaces have tran-

sitioned from large arcade style systems to small in-home
systems. Due to this trend, users have lost the excitement of
leaving their home to experience gaming in a special, unique
way. To revive this experience, new large-scale video game
interfaces must offer an experience far more exciting than the
current in-home gaming standard.

We will provide a new level of immersive gaming by
creating a motion-simulating interface for games. As a proof of
concept, we will produce a scaled-down version of our design.
Our design includes both hardware and software; the hardware
is a cage-like structure that is rotated by stepper motors and the
software controls the positioning of that structure. A micro-
controller and two motor-controller boards manage the system.
These boards move the motors to account for both pitch and
roll rotational axes and are capable of moving a seat in 6
degrees of freedom. Our design will also interface with driving
and flying games to provide input to the micro-controller for
motor control. The seat will mimic the player’s in-game spatial
orientation and forces of acceleration acting on the player.
To cut costs and improve user immersion our system design
is aimed towards using a virtual reality headset, instead of
a monitor. The design and construction of the scaled down
structure are done with stability, durability, and safety in mind.

Gamers around the world are always seeking a new way to
experience games, especially in a physical sense. Our product
will allow the user to feel as though they are in the game. It
will also allow people to get out of their home to have a 21st
century arcade experience. Because of this, our product will
be marketable and in demand.

II. MOTIVATION

With the evolution of small, in-home gaming systems the
classic arcade style of entertainment is becoming much less
prevalent. The connection with games and the experiences
they provide is being lost due to the diminishing interest
in leaving home to play games. It seems that bigger, more
immersive gaming systems are now the upcoming technology

to combat the less engaging home console. The idea of
immersive gaming technology is to have a system that can
physically envelop the gamer in the game. There are currently
many thoughts on how to do this, including using different
input devices or giving the user physical feedback. However,
there are few popular systems in the market that create this
gaming style.

The lack of immersive gaming in the world is a challenge
that has yet to be tackled. Often times, systems do not
effectively absorb the gamer because of a lack of eliminating
distractions. This means that a user cannot focus fully on the
information presented to them in game because of their real
world surroundings. An example that relates to our system is
sitting in a chair that is moving as if the user is in a car game,
but the user can look to the side and see that they are, in fact,
not on a road or even in a car.

These kinds of distractions from the outside world are the
reason that things like virtual reality (VR) headsets were
invented; these devices that you wear on your head move
with you as you look around and greatly minimize distractions
from your peripheral vision. However, the emerging problem
regarding gaming with only a VR headset is that the user does
not physically feel the virtual world that exists around them,
no matter how clearly they can see it.

So, the clearest solution is to create a hybrid of the visual
and physical world of a game, by combining the technologies
of an arcade chair and a VR headset. In this type of system,
a user can see the virtual world without distraction and
physically feel like they are in that world. But still, challenges
emerge in this design, a main one being the monetary cost to
create a system of this scale and complexity.

That is why the goal of our project is to create a gaming
experience that fully immerses the user– without distractions
from unwanted stimuli– at an affordable price. We plan to
create a proof of concept of this system that involves a
mechanical chair with 720 degrees of motion and a VR headset
to interface with a flight simulator. This project allows us to
work out the most effective design for absorbing the user and
providing the most natural feeling motion, while maintaining
the lowest cost possible.

III. BACKGROUND

Our design is based on similar designs that have been
produced by other small teams around the world. Most of
these designs provide 720 degrees of motion. They achieve
720 degrees of motion by using two motors, one to rotate the
outer frame, and another to rotate the inner frame. Their main



2

structure contains a large motor to rotate the bigger frame. The
bigger frame is rotated by the large motor around the roll axis,
with respect to the user. Additionally, inside the bigger frame
there is a sub-frame that contains a motor to rotate the inner
frame around the pitch axis, with respect to the user. Every
design we have encountered uses a large monitor to display the
game and a joystick for game input. From our, research there
is not a lot of competition in the market for these systems.

Our structural design will be similar to other designs but
with a slightly different structure. We will build a scaled down
demo version unless adequate funding is received. We will
provide a unique visually immersive experience by using a
VR headset instead of a monitor. This design specification will
allow the user to feel more naturally immersed in the game
and help prevent the possibility of motion sickness. This will
also reduce the weight of the cage and potentially reduce the
torque requirements of the motors.

As we are implementing our design on the hardware and
software level, we will leverage many building blocks. We
will use the STM32f0-Discovery board with an ARM micro-
controller and various peripherals including a gyroscope. We
will also leverage a motor control PCB we have designed
for small-scale single motor control as a starting point for
our large-scale dual motor PCB design. On the software
side, we will start with many C modules we have previously
implemented for motor control, interfacing with a gyroscope
through I2C, and communicating through UART. We will use
an open-source program called ”Flight Gear” as our flight
simulator. Our focus will be on upgrading these building
blocks for our specs and connecting all of them together to
produce a final product.

IV. MATERIALS

A. Hardware

The hardware framework of the project currently consists
of a PVC pipe structure, as can be seen in the figure below.
This structure has a base that extends upwards to hold a
rectangular piece; this piece controls the pitch axis of the
structure, which is represented by a blue line in the figure.
This axis’s movement is controlled by a motor that will be
located in the joint indicated by the light blue circle. The pitch
piece also holds another, smaller rectangular piece inside of
it. This inner piece controls the roll axis, which is represented
by a red line in the figure. The motor that controls this axis’s
movement will be located in the joint indicated by the pink
circle.

The design uses two motors, a small one to control the
roll axis and a bigger one to control the pitch axis. In our
current implementation, the motors work individually, but not
at the same time. At this point, the inner piece of the structure
can rotate around the roll axis. However, the bigger motor
still needs verification to know if it can sufficiently rotate
the structure on the pitch axis. This is a tricky task that
requires more time because the pitch piece carries the smaller
roll piece and the small motor; this added weight creates
uncertainties regarding the current motor’s ability to rotate the
entire structure.

Fig. 1. The beginning of the Flight Simulator structure.

The small inner piece of the structure also currently houses
the STM board and represents the place where a user would
sit. This allows us to use the on-board gyroscope to get data
on the movement of the chair.

We are still looking into designing a custom motor control
PCB that will control both motors. We are also discussing
other options for unique custom made hardware components.

B. Software

The software portion of our project includes a user interface,
sensor and motor controllers, and a FlightGear connection. The
user interface is created by connecting to a Putty window and
providing a menu to the user via a UART connection. This
menu uses keyboard input to send commands back to the
STM board. The commands allow for actions like selecting
between debug and simulation modes, enabling and disabling
the motors, and changing the direction and speed of the
motors. Once the commands are received, the program decides
what actions need to be done and executes them. This is how
the sensors and motors are controlled. In addition, a FlightGear
connection is made with a socket in Python. This connection
allows us to pull data from the flight simulation, which will
be used to decide how the motors should move.

V. RESULTS

The final system can be seen in 2. It consisted of a chair
PVC structure, with force sensing resistors (FSRs), motor
drivers, stepper motors, an inertial measurement unit (IMU),
and a micro-controller. The chair matched it’s orientation with
the orientation supplied by the video game. The chair output



3

values for the game developer to allow for a more interactive
experience. The game developer was able to see how much
force the player was feeling and detect the physical orientation
of the player through our systems feedback. The final system
was completed and intended to be a plug and play device.

Fig. 2. The Flight Simulator Chair Hooked Up to the Game on Demo Day.

A. Structure & Wiring

The structure of the system was built using 1/2” PVC
piping and fittings. This was chosen over metal because it
is lightweight, cheap, sturdy, and easy to cut and fit. As the
project progressed this proved to be the correct choice. The
structure consists of 3 main parts: The base and supports, the
outer platform, and the inner platform. The left support was
connected to our custom 3d printed motor mount for the large
stepper motor as you can see in figure 2. This mount had
two openings for 1/2” PVC pipe to fit into, above which the
motor was mounted using 4 screw holes. In the center of the
mount was a large opening for the motor shaft. The shaft of
the large stepper motor was connected to one side of the outer
platform. The right support was connected to the other side
of the outer platform using a small 24-wire slip ring so that
we could wire everything through a freely rotating joint. We
did experience some minor issues with the slip ring we used.
As seen in figure 3, one end of the slip ring has a very small
rotating piece to connect the platform to. We designed a 1/2”
diameter connection shaft with one end that had an opening
for this small end of the slip ring to fit into. This allowed us to
connect the slip ring to the outer platform. We did break one
slip ring because the small end is quite fragile. If the piece
that connected to the small end of the slip ring moved up or
down too much, it would snap the slip ring. This happened to
us once, but we were very careful after this incident to ensure
that it didn’t happen again.

The outer platform rotated to simulate pitch and also con-
tained the inner platform which rotated to simulate roll. One
side of the inner platform was connected to the outer platform
through another slip ring and custom connection shaft, and
the other side connected to the outer platform through a small
stepper motor. This small stepper motor was also mounted in
another custom 3d printed mount. One end of the mount was
designed to slip into the 1/2” PVC connector, and the other
side had 4 holes to mount the motor and one big hole for
the motor shaft to fit through. The inner platform encased an
IMU sensor as described in subsection C, as well as a center

weight with 4 legs, each sitting on top of a FSR. The FSRs
functionality will be described in subsection D. Figure 7 shows
an up-close photo of the center platform.

A custom wiring harness was constructed to wire up the
motors and the sensors to the motor drivers and the micro
controller. The IMU and FSRs were wired through the inner
slip ring which led to the outer slip ring. The sensor wires
from the inner slip ring and the small motor were wired to the
outer slip ring which had extended wires leading to the control
platform that was mounted to the base of the system. Three
slip ring wires were used for each small motor wire due to the
current limitations on the small slip ring wires. The large motor
had extended wires which also led to the control platform.
This control platform contained the two motor drivers and the
micro-controller as seen in figure 4. A wiring diagram, which
can be seen in 5, was created to keep everything organized
and make troubleshooting easier. During the wiring process, a
multi-meter was used to check for conductivity from one end
to the other, and each neighboring wire was checked to ensure
that none of the wires were crossed.

Fig. 3. 24-wire slip ring [1].



4

Fig. 4. STM32 Micro-controller with two motor drivers and wiring running
into PVC pipe to Sensors and Motors.

Fig. 5. Wiring diagram from the center platform to the control platform.

B. Motors and Motor Drivers

The motors and motor drivers presented continual chal-
lenges throughout the project. Initially we ordered two bi-polar
stepper motors and motor drivers which we thought would
be sufficient for our purposes. As we tested the motors and

their motor drivers, we quickly found that the motor driver
for the large motor did not operate as advertised. Our large
motor required about 2.5A per phase for maximum torque.
Our motor driver was advertised to supply 1.7A per phase
without additional cooling, and up to 4.5A per phase with
additional cooling. We found that it could not even supply 1A
per phase without additional cooling, so we installed a heatsink
on the chip and it still had issues. A month before the project
deadline, we performed testing with the structure finalized and
the motors in place. The large motor driver was unable to
provide enough current for the torque that we needed, and the
small motor didn’t have enough torque even at max current.
We ordered two new motors that provided higher torque with
less current. We also ordered a new motor driver for our new
small motor. From this point on we had no issues with the
large motor. We used the same motor driver, but it only needed
to provide about 0.6A per phase to the new motor for the
required torque. The new small motor and its accompanying
motor driver also worked much better overall, but it still didn’t
have enough torque. The night before the project deadline, we
stripped the frame off of the inner platform to shorten the lever
arm and to reduce weight drastically. The small motor worked
flawlessly from this point on.

The motor drivers can be seen in figure 6. Each one has
a current limiting potentiometer to easily tune the amount of
current that is output to the motor [2]. It was important to
ensure this was properly set so that the current to the motors
did not exceed its specifications and cause damage. The inputs
for the motor drivers include: Vdd, ground, step, and direction.
The driver for the large motor received a 10V power input,
and the driver for the small motor received a 20V power input.
Each driver had a 100uF ceramic capacitor in parallel with
Vdd and ground to protect the chip from LC voltage spikes.
The step and direction inputs came from the micro controller
telling the motor when to step and in what direction. Each
board also had 4 outputs to the motors, one output per motor
lead.

Fig. 6. Motors driver boards. Left one for the large motor, right one for the
small motor.



5

C. Inertial Measurement Unit

The Inertial Measurement Unit (IMU) used was the the
BNO055. This IMU was placed in the center of the chair in
order to get the most accurate orientation. This is shown in
figure 7, where the IMU is in the middle of the Force Sensing
resistors, which will be explained in the next section.

Initially we tried to use the Library for the BNO055 supplied
by Bosch and Adafruit because it has easy to use functions that
provide quick setup and data readings [3]. Upon trial and error,
we found that these libraries were designed for an Arduino in
C++ and therefore would not work for our project. So, we
rebuilt them from scratch using just the data sheet. We also
added an initialize function that would not allow the program
to continue before the system was calibrated, this way the
structure always starts off in a stable position.

In our implementation of the libraries, the system sends
requests byte by byte to initialize the IMU and ensure that it is
calibrated. For this calibration we set the IMU to NDOF mode,
which means that it uses the chip’s magnetometer, gyroscope,
and accelerometer; using all of these sensors together allows
for a better reading on the orientation of the structure. Our
system uses this information to provide useful messages to
the user on what stage of the calibration the system is in and
when it is complete. We also added limitations on the ranges
for when the IMU is allowed to interfere with and correct the
chair, since we found that the orientation range was limited
and not always accurate for the pitch axis.

Overall, this IMU proved to be quite helpful in initializing
the system and ensuring that the user begins in a stable state.
We had hoped to use it to keep the structure in a more accurate
position throughout game-play, however, the IMU would often
over-correct for FlightGear causing the structure to move in
odd ways. When we saw this happening, we ran tests without
the IMU correction and realized that the structure was already
responding quite well to the movements in FlightGear.

D. Force Sensing Resistor

We connected the force sensing resistors [4] to the STM32
micro-controller, and we were originally hoping to use the
many ADC Channels the STM32 micro-controller had to track
the 4 force sensors separately. But, we found that all the
channels shared the the same peripheral where you would
retrieve the data. The problem we ran into was we had to
get the right data from the right sensor at the right time.
Originally I tried turning on and off each ADC channel at
a time and pull the sensor data when the channel was on.
This method was too slow and didn’t work. Another attempt
was to use a DMA buffer to store the values from each of the
force sensors so we could read them off and use them. We
had issues getting the DMA working correctly and data from
the 4 force sensors would interfere with each other. We tried
many different methods to get the DMA working for multiple
sensors with no avail. The DMA seemed to only work for
one FSR. We did go back and forth between using the ADC
Channels alone with the DMA and back to the DMA. In the
end we settled on the DMA even though either one would have
been fine. Using only one force sensor still helped us see the

force felt by the person in the seat as the pitch changed. With
this information, the game developer could use it to create the
illusion of acceleration and decelleration.

Fig. 7. The chair center with an IMU and FSRs hooked to the bottom of it.

Fig. 8. The packets being sent to and from the chair.
(Top String = Game Data; Bottom String = Chair Data.)

E. Firmware

Our code was written in embedded C. The code
ended up being split into 8 main modules, main, FSRs,
game_parser, putty, USARTs, GPIOs, BNO055, and
motors. The firmware revolved around a feedback system
that would take the desired orientation (pitch and roll) and
match the motors to that orientation. The system would start up
and use the gyro to detect the orientation of the physical chair
and set the actual orientation in steps based on the gryo. The
chair would then match it’s orientation to desired orientation
supplied by the video game.

The chair would send a start signal to the game developer
to let them know when the initialization was complete. The
game would in turn respond a start byte to the micro-controller
of [0xFF]. If the micro-controller parsed a valid roll and
pitch value from the game it would respond with updated
information about the chair. It would send information about
the orientation of the motors, gyro and force felt by the user.
This feedback data is shown as the bottom line in the output
window in figure 8.

The micro-controller had inputs from the BNO055 that
came in as values -90°to +90°for pitch, and -180 to +180



6

for roll. The code had to convert from these ranges and units
to the ranges and units of the motors. The code converted
both the roll and pitch to steps of 0 to 200. The input from
the game was 0 to 360 and was also converted to steps of
0 to 200. The IMU provided accurate data when the system
wasn’t in motion but inaccurate data when the motors were
moving. This meant that we couldn’t fully rely on the gyro.
We used the gyro to synchronize the motors to the game and
then the motors would keep track of their steps there after.
This caused more accurate and smoother movements while
keeping the system synchronized.

F. Gaming Interface

Our system received target orientation data over UART from
the game. For our demo we chose a software called Flight
Gear to act as our game. We chose Flight Gear because it
allowed us to poll data every second about a simulated plane.
We connected to the Flight Gear API by sending it HTTP
requests using Python. The API would respond with the target
roll and pitch data requested. Once the target data was retrieved
the Python script sent it over UART to the micro-controller.

The game data protocol consisted of a start byte [0xFF]
followed by 2 roll bytes [LSB_Roll][MSB_Roll] and 2
pitch bytes [LSB_Pitch][MSB_Pitch]. Both roll and pitch
ranged from 0-365°. The roll and pitch game data could be
seen as the top line in the output window in figure 8. On
demo day the system appeared to have a second of latency
between the game and the chair. This limitation was not
from our system but from the open source software, Flight
Gear. The time it took to retrieve data from Flight Gear over
HTTP requests was very slow. If a game developer used our
system they could send values as fast as UART would allow,
minimizing the latency to just a few milliseconds.

VI. CONCLUSION

At the onset of this project, we aimed to produce a proof of
concept flight simulator chair. The chair was to be a plug-n-
play device that simulates the movement of any object which
has pitch, roll, or both pitch and roll axis of movement.
We faced many setbacks and difficulties with our structure,
motors, firmware, and sensors. As a team, we collaborated
and overcame the roadblocks we faced delivered a finished
product according to our original design goals.

REFERENCES

[1] A. Group, “Cap type conductive slip ring,” Alibaba
Group, Taobao, Taiwan, Dec. 2019. [Online]. Available:
https://www.aliexpress.com/item/33033275044.html

[2] P. Corporation. (2019, Apr.) Drv8825 stepper motor driver
carrier. Pololu Corporation. Las Vegas, USA. [Online]. Available:
https://www.pololu.com/product/2133

[3] “BNO055 data sheet,” BOSCH Sensortec, Reut-
lingen, Germany. [Online]. Available: https://cdn-
shop.adafruit.com/datasheets/BSTBNO055DS00012.pdf

[4] “FSR03CE data sheet,” Ohmite, Warrenville, USA. [Online]. Available:
https://www.mouser.com/datasheet/2/303/resf sr − 1590094.pdf


