
Swift Park
An Application for the Internet of Things

Brien Elwood Washburn, Kohl Riekhof, Jia Jun Yu
University of Utah

Abstract— The internet is currently on the doorstep
of the next stage in its evolution—the internet of things.
The internet of things is a vision of the future in which
things in the world can talk to each other. A current
problem that can be addressed by implementing the
internet of things is parking, particularly at universities.
This report details the development of Swift Park, which
is an application of the internet of things. Swift Park is
an application that looks to a future where smart cars
with a plethora of cameras for self-driving or monitoring
the road will be common place. Swift Park uses cameras
in smart cars to capture QR codes placed on posts in
each stall of a parking lot. The data in the QR code
is relayed to the URL found by processing the QR
code using custom software in the car. This data is
received by a controller developed in Python that places
it in our Firebase database. The Swift Park website,
developed in CSS, JQuery, JavaScript, and HTML5,
listens asynchronously to the database and updates a
map, which anyone can access at the Swift Park website,
in real time.

I. INTRODUCTION

The internet of things is a vision of the future
where objects throughout the world will contain and
transmit data. As the name implies, common appliances
and structures in our environment will be capable of
connecting to the internet in a meaningful way. The
goal of this vision is to connect the ordinary objects in
life to eliminate the mundane, such as shopping for
food or watering plants. The internet of things is a
vision of productivity.

Parking, especially at universities which sell more
passes than spaces, can be time-consuming. Lots are
often far apart, or have special rules about which passes
can be used during certain times of the day. It is
inconvenient to drive each row of the lot only to realize
that there aren’t any spaces left. Navigating multiple
lots in search of a place to park can take up to 10
minutes.

Sometimes the best option is to park in a paid
stall when there is no time to wander the lot looking

for a spot. Current systems require the user to be
carrying change or manually enter information into
an app each time they park in a paid space. While
paying with an app is a simple process, it suffers from
the same problems that traditional meters have—it is
necessary to correctly estimate how long you will need
to park. Oftentimes, these services require a surcharge
for processing the payment, making it even more costly
to extend the time on a paid stall.

Both of these problems can be mitigated with the
Swift Park lot-monitoring system in a future where
smart cars are ubiquitous. (For the purpose of this
report, smart car(s) will refer to any Wi-Fi capable car
or cars that have cameras in the front and back of the
car capable of scanning a QR code and providing it to
custom software in the system.) The Swift Park system
involves placing QR codes on a post in each parking
space in the lot. Each person that frequents the lot will
have a smart car that will constantly be scanning its
surroundings. When the car pulls into a parking stall,
the cameras will capture the QR code and pass it to
the Swift Park software suite. The QR code will be
evaluated and the Swift Park software will send the
data to the URL found in the QR code. The server at
the URL will receive the data, update the parking-lot
database, and the Swift Park website will then update
the map of the parking lot to acknowledge the new
occupant.

Swift Park is a vision of the future. In this future,
every car will come straight from the manufacturer with
hardware that can support QR capture and commu-
nication through the internet-of-things (IoT) protocol
defined in the software of the car’s computer. This
IoT application allows for easier parking, and will
increase revenue of paid parking given that users are
held accountable for every second they are parked
in the stall. It can also decrease costs as lots won’t
need to be monitored as heavily given the ability to
automatically recognize a car and have the user pay for
their time spent parking. Additionally, parking passes



can be validated through the Swift Park database.
The remainder of the report discusses the evolution

of the internet and similar applications in Background;
Results

II. BACKGROUND

A. Evolution of the Internet

The internet began as a way to connect computers to
other computers. It was created in universities as a tool
of academia. With the advent of the personal computer,
the internet became a tool for people to connect with
other people. Social networks see widespread use, as
well as sites used for business and education.

As technology has improved over the last decade,
the size of the hardware has become drastically smaller
and more powerful. The internet has become common
in nearly every aspect of our lives, and is now used to
keep in constant contact with people through messaging
and email.

Power is now so common throughout our world that
devices can be placed nearly anywhere. Now that com-
puters can be embedded into just about anything, the
internet is going through another stage in its evolution:
one in which objects can communicate with one another
in the hopes of greater efficiency with less human
effort. This next step in the evolution of the internet
is the internet of things.

B. Internet of Things Application

A study was conducted about the use of smart objects
as the building blocks for the internet of things [1]. This
study involved designing smart objects with different
design categories such as awareness and interactions.
The three types of objects were activity-aware objects,
policy-aware objects, and process-aware objects.

Activity-aware objects are capable of recording in-
formation about how the tool was used. This data
includes metrics such as time, state, and vibration of
the object.

Policy-aware objects are activity-aware objects that
are capable of evaluating the data stored from activity-
aware objects and taking certain action based upon that
data.

One example used was a smart barrel that was
capable of informing workers in the vicinity of the
barrel whether the current state of the chemicals within
the barrel posed a risk to workers based on its current
condition.

This is similar to the paid-parking functionality in
Swift Park that is capable of taking certain actions

based upon the interactions between a passive and
active IoT component. If a person is in paid parking,
the system is able to use information from the passive
and active IoT components to charge the user’s credit
card according to the time that they have been parked.

C. Lot Monitoring

Smart Lot is a senior project completed at the
University of Utah in 2010. The Smart Lot system
uses a camera to locate empty parking spaces and then
relays that information to traffic lights stationed at the
end of each row. The challenges this system faces stem
primarily from the parking-space detection algorithm.
It encounters issues with different lighting, snow, and
potentially from the color of cars.

Swarco Traffic Systems is a lot-monitoring system
that uses ultrasonic technology to determine where cars
are parked [2]. The ultrasonic sensors are capable of
measuring the distance of an object to the ground.
If the distance traveled by the wave is determined to
be reduced by the presence of car, the sensor sends
an “Occupied” status message to a higher-level area
controller. These controllers then communicate with
hardware that displays information about parking on
signage inside of the parking lot.

Streetline uses a mesh network to relay information
about free parking spaces and volume and speed of
passing traffic [3]. Each node in the network has a
magnetic sensor that detects cars parked above it. The
sensor is capable of determining if a car is above it by
searching for disturbances in the earth’s magnetic field.
This information is then transmitted wirelessly through
the mesh network. A mesh network allows for each
mesh node to collect and transfer information through
other nodes and eventually to servers that can display
free parking spots through street signage or smartphone
maps.

The Swift Park system circumvents the detection
problems encountered by Smart Lot by providing each
spot with its own QR code. This will allow accurate
sensing of individual parking spaces despite environ-
mental factors such as weather or the time of day.

The first primary difference between Swarco Traffic
Systems, Streetline, and Swift Park is the cost. The
sensors for these two systems are more complex due
to their sensing style and the ability to communicate
wirelessly. The QR codes used in the Swift Park system
can be made at a fraction of the cost, and there is
no additional cost sensing the QR codes since the
application is targeted for a time when smart cars



Fig. 1. The common five-layer protocol stack used in networking.

are common, which leaves only the software to be
downloaded to process the QR code and send it to
the controller over Wi-Fi. Swift Park also utilizes a
dedicated website to display lot information instead of
hardware in the lot or existing maps for smartphones.

The second major difference is the route to commu-
nicate information and the way sensing works. These
others systems use intelligent sensors that are separate
from the car to locate cars and transmit data. This
means that once a sensor is put in place, it has no
reliance on the user’s system to operate correctly,
making it harder to tamper with. Swift Park moves
the active components to the user’s car, thus making
the sensors very simple, cheap, and easy to install and
maintain, but there is reliance on the user’s system to
make Swift Park work correctly.

III. RESULTS

As computer engineers, it is important to understand
current technology while having an eye on the future.
Computer engineering is an innovative and competitive
field, and it is an important skill to be able see the
trends in technology.

The central idea of Swift Park was to create a project
that utilizes current technologies while predicting and
making full use of upcoming, revolutionary technolo-
gies: namely, smart cars and the internet of things.

The internet of things is going to allow nearly any
object to provide data to the world around it through
two component types: active components and passive

components. Passive items—things like a parking stall,
a sign, or a product in a grocery store—will be capable
of providing information to the environment. Active
items, such as RFID readers or cameras linked with
QR-processing technology, will be able to scan the en-
vironment and access the information in passive items.
The active component, after acquiring information from
a passive component, will hand off the data to a client.
The client can then process the data according to its
established IoT protocol, completing the data transfer
from a passive object all the way up to software that
can process and use the information encoded in the
passive item.

One possible application is a grocery store that marks
each item in the store with an RFID tag. Readers at the
exits of the store would scan each item and send the
information to varying databases. One of the databases
could group items by user to allow the grocery store to
determine which items are typically purchased together.
This information could then be used to optimize the
layout of items in the grocery store to make it easier
for customers to find items and maximize profits.

In Swift Park, the passive object is a parking stall
that contains a QR code. The active component, also
called the client, is a smart car with cameras, QR-
processing software, Wi-Fi capabilities, and the Swift
Park application suite. The client engages with the
passive parking spot when the car pulls into a stall.
The client then sends the data it receives from the
parking stall’s QR code to the URL packaged in a
JavaScript Object Notation (JSON) object. The URL
maps to a controller that parses the JSON object and
acts according to the data acquired. If the car is parking
in the space it occupies, the client updates that parking
space’s entry in the Firebase database to reflect the
change in the parking lot. The Swift Park website then
updates its map of the parking lot asynchronously based
on the changes to the database.

A. RFID to QR Technology

The project proposal originally stated that the passive
IoT component in Swift Park was to be an unpow-
ered ultra-high-frequency radio-frequency identification
(UHF RFID) tag. An unpowered UHF RFID tag is
called a passive tag because it does not require any
active component to function. The tag is accessed using
a UHF RFID reader that can access the information.

The plan was to place the passive UHF RFID tag
an inch or two deep into the concrete of each parking
stall. A UHF RFID reader, the active IoT component,



would then be connected to a Raspberry Pi computer
inside the car that could read activate the reader when
the car stopped. The reader would then power the UHF
RFID tag in the concrete and retrieve the information
it was storing.

There were two problems that came up. The first
was that the distance from the reader inside the car to
the tag buried in the concrete is in the mid range of the
limit of UHF RFID. The second is that the obstructions
of nearby metals (the cars in the lot) and concrete
significantly reduce the range. These two problems
together make it impossible to read the UHF RFID tags
from the car, even if the reader is outside and on the
bottom of the car.

This was discovered when attempting to validate
the plan to use RFID. Contact was made with a
representative of SkyRFID to learn more about what
tags and readers in particular would work well with the
project. The response from an employee of SkyRFID
named Dylan made it clear that ”UHF 433MHz active-
tag technology” would be required to read the tag with
the car and concrete as obstructions and at the distance
we needed.

It became necessary to find another technology
that would be cheap, passive, and would fit with the
internet-of-things core of the project. QR was the next
technology that made sense to try. QR codes are becom-
ing a popular choice to connect items to the internet of
things because they are cheap, easy to generate (there
are a number of websites that will generate QR codes
for free), and can be very small and unobtrusive. They
are also capable of storing up to 3kb of data.

QR codes were a great choice for Swift Park as it
is a passive technology that makes it simple and cheap
to connect a lot of passive components to the system,
allowing the less numerous active components to do
the heavy lifting. They are also able to hold as much
information as we needed without being too small so
they are able to scan and process quickly.

B. Research and Protocol Definition

The research portion of the project was centered
on defining two protocols to communicate with active
and passive IoT hardware. The passive IoT protocol
is used to communicate with hardware that cannot
process information. When two active IoT items such
as a server and Swift Park hub are communicating, the
active IoT protocol is used.

When innovating it is unnecessary to reinvent the
wheel, so we made use of of the current protocol stack

utilized in networking. The protocol stack consists
of five layers. From bottom to top, these layers are:
physical (or hardware), link, network, transport, and
application layers. The protocol stack can be seen in
Fig. 1, with common protocols to the right of the stack.
(The User/Application layer is not a part of the five-
layer protocol stack—it is used for the express purpose
of showing a typical network from top to bottom.)

The physical layer describes the medium over which
the information travels. In this case, information will
travel on electromagnetic waves.

The link layer details the protocol that controls the
physical layer. In the Swift Park project, the link layer
supports two protocols: passive IoT using the using
cameras to read QR codes, and Wi-Fi (IEEE 802.11),
which will communicate information to the Python
server (the controller).

The network and transport will maintain their nearly
shared functionality of making certain that messages
are accurately passed from the user, down through the
protocol stack, and back up to web page.

The application layer is traditionally used for the
HTTP protocol for requesting information about web
pages on the internet. In Swift Park, the application
layer is used to facilitate communication over the active
IoT protocol, which uses HTTP as the base protocol.

When communicating via QR code, it is necessary
to minimize the complexity of the protocol. This means
that the QR codes need to hold a small amount of
information, namely only a uniform resource locator
(URL) and a value, so that the image can be captured
and analyzed rapidly. The data is then sent to the URL
from the QR code. The controller at the URL can then
interact with the database or provide information back
to the client.

The active IoT protocol is then used between active
IoT components which are able to process information.
The active protocol is capable of communicating a
variety of actions which are specified in the hand-
shake between two active components. Each active IoT
component can then provide requests to the other IoT
component, as well as the parameters required to enact
the request.

1) Passive IoT Protocol: The passive IoT protocol
is for active components to talk to passive components.
The passive protocol is very simple so that the passive
component does not require a lot of resources and can
communicate rapidly.

The passive IoT protocol for Swift Park contains only
two pieces of information: the data to be sent, and the



URL to which it will be sent. The format of the QR
code is

passive IoT: data+host

An example QR code from Swift Park that is used
for one of the parking spaces is

passive IoT: 5+lab1-18.eng.utah.edu

This information will allow the client to send the
value 5, which represents the parking-stall number 5,
to the URL lab1-18.eng.utah.edu. This will be done
using the active IoT protocol.

2) Active IoT Protocol: The active IoT protocol is
used when two active components are talking to one
another. In the case of Swift Park, the two active
components are the client and the controller. The active
IoT protocol defined by Swift Park uses a JSON object
to pass data between two active IoT objects.

JSON, or JavaScript Object Notation, is a way to
format data to make it easy to exchange and understand.
It is language-independent, which makes it simple to
use across any language or platform, and it is ”self-
describing”, meaning it makes intuitive sense what the
data means when looking at it. As can be inferred from
the name, it uses JavaScript formatting, but it is only
text.

The base protocol used to communicate between the
client and controller in active IoT is the HyperText
Transfer Protocol (HTTP). HTTP is foundational to
the internet, and is the most common application-layer
protocol used online.

The active IoT protocol defined for Swift Park is
strictly a data-formatting protocol, and exists in two
different forms. One is for when the client talks to
the controller, and the other is for the controller to the
client.

The client-to-controller protocol states that a JSON
object will be passed over HTTP in the format of:

active IoT:
data={’type’:REQUEST,’spot’:SPOT,’user’:USER}

where REQUEST is the type request being made of
the controller (e.g., claim spot or release spot), SPOT is
the parking stall that the user is occupying, and USER
is the unique identification of the client.

The active IoT protocol for the controller to talk to
the user also uses a JSON object over HTTP, but the
format is a bit different. Instead, the JSON format with
information useful to the client. The format is

active IoT: data={’available’:AVAILABLE,

’permission’:PERMISSION,’payed’:PAYED}

where AVAILABLE is set based on whether the
parking stall is available to park in, PERMISSION tells
the client if they are allowed to park in the spot (parking
in a handicap spot without handicap pass would result
in denial of permission), and PAYED states whether
parking in the space occupied requires payment.

C. The Client

The client can be thought of as the system that
interacts with the lot and conveys information to the
controller. The client is the system composed of the
cameras in the smart car, the software that evaluates
the QR images it receives, and the software and hard-
ware that relays the parking-spot information to the
controller. The client is coded entirely in Python 2.7,
and uses OpenCV and ZBar for image processing.

The client works by constantly taking images and
evaluating them to see if they are a QR code. If the
image is not a QR code, the output file, qrdata.txt, is
left blank. In the case that the image is a QR code, the
code is evaluated and the data is placed in the qrdata.txt.
Checking to see if qrdata.txt is blank is the basic test
to see if the image captured was a QR code.

When the qrdata.txt contains information, the client
will parse the file. The data is formatted in passive-
IoT form, so the client splits the information in the
file on ”+” to separate and retrieve the spot data and
URL. The client then opens a socket using the Python
socket library and connects to the controller server on
port 2113 using the URL retrieved from the QR code.
Once the client connects to the controller, it will send
information to the controller using the active client-to-
controller IoT protocol.

The first piece of data in the JSON object that the
client sends to the controller is what action it would like
to take. The second contains the parking-spot data. The
third is the user’s unique Swift Park identification.

The four action options possible are request, claim,
release, and close. The request action will prompt the
controller to provide the client with information about
the spot it currently occupies. The controller will re-
spond using the active controller-to-client IoT protocol.
The client will then parse the JSON it receives, which
will tell it whether it the spot it wants to claim is
available to park in, if it has permission to park in the
space, and if parking the stall requires payment.

If the spot is available and the user has permission to
park in the spot, the user can claim the space (details
provided in the Raspberry Pi Client and Laptop Client



subsections). This requires the client to send another
JSON object to the controller with the claim action.
(The second and third pieces of data, spot number and
user identification, respectively, will remain the same.)
This will prompt the controller to claim the spot in the
database, and the map of the parking lot on the website
will be updated to reflect the car parked in the parking
space, changing the space from green to red.

When the user is ready to leave the parking space,
the client will communicate with the controller with the
release action. The controller will modify the database
to reflect the user leaving the lot, and the website will
change the previously taken spot from red to green.

The final action possible is close. This will shut
down the socket connection to the controller, ending
the interaction between the client and controller.

1) Raspberry Pi Client: The original interface to
simulate the smart-car client was the Raspberry Pi B+.
This is a small, simple computer that has a 700MHz
single-core ARM1176JZF-S CPU. (The Raspberry Pi
was originally going to be used as the full client when
RFID was the passive technology.) The Pi was kept
when the switch to QR from RFID was made as it is
a more modular element that fits the goal of the senior
project well.

The Raspberry Pi has a camera called the Pi Camera
that is used to capture images. The camera is accessed
in the Python client through the use of an imported
library called picamera. This library makes interfacing
with the Pi Camera quite simple.

The Pi Camera is accessed using the command

camera = picamera.PiCamera()

This will provide a camera object that can be used to
take pictures with the Pi Camera. The controller enters
a loop after performing this command which will not
break until the output file qrdata.txt contains QR data.
Once the QR code is evaluated and its contents are
placed in qrdata.txt, the file is parsed and the QR data
is retrieved.

The Raspberry Pi client includes an interface com-
prised of LEDs and push buttons that are used to
interact with the controller through the Pi’s GPIO.
(The interface can be seen in Fig. 2.) The orange
LED on GPIO 17 is used to indicate that the client
is running. The blue LED indicates that your car is
currently parked and registered in the database. The
RGB LED (red on GPIO 24, green on GPIO 23, and
blue on GPIO 22) is used to indicate the status of the
spot being parked in. If the spot is available and you

Fig. 2. The LED-and-push-button interface for the Raspberry Pi.

have permission to park in it, the RGB LED is green. If
the spot is unavailable or you don’t have permission to
park, the LED is red. If payment is required, the LED
turns yellow.

When the status LED is green, indicating that the
user is allowed to park in the spot, the push button
on GPIO 4 can be pressed. This will communicate to
the controller the claim action, taking the spot. When
the user is finished parking in the spot they can press
the push button on GPIO 27 to send the release action
to the controller, thereby freeing up the spot in the
database and on the Swift Park parking-lot map.

The Raspberry Pi client with this interface is capable
of being run without a display—it is entirely headless.
This interface allows the user to interact with the Swift
Park application without requiring any sort of display.

2) Laptop Client: The other hardware used to sim-
ulate the smart-car client is a laptop running Debian 8.
The reason to use a full laptop is to get a better idea
of how the system would run in an actual smart car.
The laptop is able to capture and process images more
rapidly, and can provide a display similar to that you
would find in a modern smart car.

The laptop client is a Dell Inspiron 17 3721 with
an Intel core I5-3337U processor. The processor runs
at 1.8GHz, or 2.7GHz after overclocking. It also has



an Intel Centrino Ultimate-N 6300 AGN wireless card.
The specifications of this machine are much closer to
what could be expected from a smart car.

The laptop client captures images through the pro-
gram OpenCV. OpenCV then stores the image in
a folder which ZBar can access. ZBar is image-
processing software, and is used to process the image
to see if it is a valid QR code. If the image is a QR
code, the data is extracted in placed in the qrdata.txt
output file that the client can access.

The laptop client also differs from the Raspberry
Pi client in that the process of interacting with the
controller is automated. When the user pulls into a
spot and the request action yields spot availability and
permission to park from the controller, the spot is
claimed automatically. Likewise, when the car leaves
the spot it releases the spot automatically. The client
prints information to the screen during each exchange
between the client and controller so the user knows
what is occurring.

D. The Database

Swift Park uses a database system called Firebase.
Firebase is a back-end system based on the JavaScript
library jQuery that simplifies the process of storing user
information in a database, modifying the database, and
extracting information from the database.

The database structure is based on the JSON format,
and can be set by uploading a JSON file to Firebase.
This makes it very easy to setup a database and
make any necessary modifications. Firebase also has
a website that makes it possible to see the database,
and to view changes made to the database in real-
time. The website also allows changes to be made in
the database through the website GUI. This feature
makes testing much easier as the JSON format is simple
to understand and the real-time changes and ability
to make modifications makes database manipulation
incredibly quick and easy.

The format of the Swift Park database can be seen
in Fig. 3. The database contains four main categories:
spotData, spotInfo, userInfo, and users.

The spotData category, seen in 5, contains the fields
color, height, width, pass, x, and y. Color determines
whether the spot is taken: if the spot is green, it is
available; if it is red, it is unavailable. The x and y fields
determine the pixel locations on the map of the location
of the parking spot. The width and height fields are the
size of the parking space. Pass dictates what type of
the pass the user must have to park in the spot.

Fig. 3. The Firebase database format.

Fig. 4. The format of spotInfo in the database.

The spotInfo category, seen in 4, has all the same
categories of spotData except for color. This category
is used to craft responses from the controller to the
client, while the spotData category is used to by the
map on the Swift Park website.

The user category (Fig. 7) contains a credit card,
parking pass, password, and unique client ID that is
assigned to the user. This controller accesses the user
account to see if the person has the correct parking pass
to park in the spot it requests. It can also see if the user
is able to pay for parking in a paid spot.

The userInfo category, seen in 6, contains a single
field that maps the client unique identification to the
email address of the corresponding account. This cat-
egory is used by the controller to access the user’s
account information via email without having to iterate
through every user account looking for the client ID.
(This would be necessary as user accounts are located
through email, not client ID.)

E. The Controller

The controller is used to mediate between the client
and the database. It interacts with the client through the
two active IoT protocols to modify the database based



Fig. 5. The format of spotData in the database.

Fig. 6. The format of userInfo in the database.

on the choices of the user, and to inform the client of
its options by querying the database to find out about
the parking spot the user is occupying.

The controller takes a JSON object from the client
through the active client-to-controller IoT protocol.
This JSON states what action the client would like
to take, the spot the user wants to occupy, and the
unique ID of the client. When the controller receives
this information it queries the database using an API
developed in Python specifically for the controller. The
API contains the functions take, release, isAvailable,
canPark, and isPayed.

The isAvailable function is executed when the client
specifies the request action in the JSON object it
provides to the controller. This function gets the spot-
Data entry in the database corresponding to the spot
specified in the client-sent JSON. The availability of
the spot is then determined by the color field of the
JSON returned from the database. This information is
communicated to the client via the active controller-to-
client IoT protocol.

Fig. 7. The format of the users category in the database.

The canPark function also runs when the action spec-
ified is request. This function will index the userInfo
category in the database. The client ID will be used
to find the email address, and that will be used to
access the user’s account. The account is needed to
find the parking of the user. Once the user’s parking
pass is known, spotInfo is accessed using the spot
data specified by the client. The parking pass required
by the spot is then retrieved and compared to the
parking pass of the user. If the user’s privileges set
by the parking pass are less than that required by the
parking spot, parking privileges are denied. Otherwise,
the permission is granted. In both cases the controller
communicates the permission status back to the client
through active controller-to-client IoT along with the
availability data.

The isPayed function executes when the action spec-
ified is request. The isPayed function will index the
spotInfo category of the database with the spot data
provided by the client. The JSON will be parsed to find
the pass type. If the pass type is ”L”, the spot requires
payment. This will be communicated back to the user
along with the spot availability and the permission to
park.

The take function is invoked when the client specifies
the claim action. Take indexes the database using the
spot data communicated by the client. The controller
then modifies the color field of the JSON it received
from the database query to red to signal that the spot
is no longer available. This JSON is then stored in the
database in spotData. The website will be notified of
this change and will modify the parking space on the
map to show that the spot has been claimed.

The release function executes when the release action
is specified by the client to the controller. Release
is exactly the same as the take function, except that
it changes the color of the spot from red to green,
signaling that the spot is now vacant. Again, the website
will be notified and will update asynchronously to show
that the spot is now empty and available.

F. The Website

The goal of Swift Park is to simplify the entire
parking process, and the website contributes to this
goal in multiple ways. It allows users to easily access a
map of the parking lot to find available parking. It also
makes it possible to pay for parking without having to
guess the length of time you will be in the lot, carry
change for parking meters, or deal with an app that
requires a surcharge whenever you pay for additional



time. You can simply make an account registering your
unique Swift Park identification, provide the type of
parking pass you have, and supply a credit card to be
charged when parking in a paid stall.

The two main components of the website are the
application and the user accounts. The application
mostly uses jQuery to implement and update the map
by communicating with the database. The user accounts
consist of JavaScript to parse account information en-
tered on the website and update and query the database.

1) General Development: The Swift Park website
was developed using JavaScript, the JavaScript library
jQuery, CSS, Bootstrap, and HTML5. The website has,
at its core, a heavily modified CSS template. The
decision was made to use a CSS template for the initial
website, but significant changes have been made to
suite the project. A search was recently conducted in an
attempt to locate the template source so the originators
could be properly credited. Unfortunately, the source
could not be located, but it is important to note that
the website was started from a basic CSS and HTML5
template.

Bootstrap is also heavily employed. Bootstrap is a
type of formatting tool used to format a web page using
CSS. There is very little CSS in the website that isn’t
accessed through Bootstrap.

2) Application: The application consists of the map
and the software to keep it updated. Updates to the map
occur through callbacks setup using the Firebase API,
which is built upon jQuery.

Interacting with the Firebase is a fairly simple pro-
cess that consists of creating a new Firebase using the
URL of the Swift Park database. The main categories
of the database—namely spotData, spotInfo, userInfo,
and users—can be referenced using the child function
from the Firebase API with the name of the category
as the field.

Once a reference to spotData and spotInfo are cre-
ated, callbacks can be made by calling the on function
on the references. The callbacks of spotData, the cat-
egory that contains the data representing each parking
space, are invoked if a child is added or changed. Both
callbacks execute the function drawSpot.

The drawSpot function uses the spotInfo database
reference to extract the x and y coordinates of the
parking spot, as well as the width, height, and color.
All of these attributes are used to modify the map on
the Demo-App page of the website. Since the database
stores the color corresponding to the parking space’s
availability, the drawSpot function can be invoked when

a spot is taken or released.
3) User Accounts: The user accounts allow the user

to provide information about them in relation to the
parking lot. A user account holds the user’s parking
pass, credit-card information, and unique client ID, as
well as the user’s email and password. All of these
values are used to simplify the parking process for the
user by informing them when they are allowed to park
somewhere and if doing so will cost them money. It will
also automate the payment process for them, removing
the burden of manually paying repeatedly when time
expires or getting a ticket if they don’t make it back to
the meter in time.

The user-accounts portion of the website was de-
veloped primarily using basic JavaScript. Some jQuery
was used through the Firebase API.

Account creation takes place on the sign-up page, ac-
cessed through the Create Account button in the navbar.
This page consists of a Bootstrap form that takes a
user’s desired email address, password, unit ID (client
identification), parking pass, and credit card. When the
use clicks the submit button, the form executes the
JavaScript function, signup, in scripts.js.

Signup finds the information entered into the form
fields based on the division IDs specified in the form.
Once the division is acquired, the value field can be
accessed, providing each element the user entered. Each
element is then passed to a function called setCookie.

The accounts-portion of the website is based on the
usage of cookies. Cookies allow information to be
stored in the browser until cleared. This means that
data doesn’t need to be passed from page to page as it
is stored in cookies in the browser. It also means that
the user can leave the page, come back later, and still
have their account information show up in the Demo
App because the cookies will be accessed and used to
display their information.

The function setCookie takes the name of the cookie
provided and the value that it is to be set to. It creates
a date object set a year in the future (this means the
cookie will last for a year unless cleared manually or
written over), concatenates that with the cookie name
and value, and sets a desired path that determines where
the cookies can be accessed.

Now the user will be redirected to the Demo-App
page where their account information will be displayed,
along with the application map of the parking lot.
The user can navigate through the website using the
navbar at the top, and return to the Demo App which
displays the map and their account info using the Check



Account button. A user can also sign out of their
account using the Sign Out button in the navbar. This
will invoke the deleteCookiez function in scripts.js,
which, as the name suggests, will clear the cookies
corresponding to the user’s account.

When a user wants to sign back in after signing
out, they are able to do so by entering their email and
password in the corresponding boxes in the navbar and
clicking Login. This will execute the function cookiez.

Cookiez will find the navbar division which contain
the elements entered into the sign-in text fields in
the navbar—namely, the email and password fields.
Once these divisions are stored and the value of their
text boxes are acquired, the function accessAccount
is called with the email address and password as
parameters.

AccessAccount will use the email address provided
to index the user reference from the database. Once the
corresponding account has been acquired, the password
is verified by comparing it against the password stored
in the user account. If the password is validated, the
setCookie function is called on each of the items stored
in the JSON that was retrieved from the database.

When a web page is selected in the navbar, when
the page loads the function loadNavbar is called. This
function uses cookies to determine if the user is cur-
rently logged in or logged out. If the user is logged
in, the navbar is set to provide the Check Account and
Sign Out buttons. If the user is logged out, the navbar
will provide the email and password text boxes and the
Login button, as well as the Create Account page link.

If the user navigates to the Demo-App page on
the website, the page will call the displayInformation
function. This function calls loadNavbar and populate.

The populate function will locate the division of the
account form on the Demo App page and populate
them according to the cookies set. If the user is logged
out, no information will be display as there aren’t any
cookies set corresponding to the users account.

The user accounts facilitate the goal of Swift Park,
allowing the user to more easily locate and pay for
parking without worrying about overpaying for parking,
or underpaying and having to hurry and feed the meter
to avoid a ticket.

G. Prototype Development

A prototype of the project was developed in the
early summer after the switch to QR technology to
make certain that the plan for the project was sound. A
simple Python client was created using ZBar to analyze

a QR code. A Python socket was hard-coded to the
controller’s URL to transmit the spot data from the QR
code. The controller was also hard-coded to access and
modify a certain spot in the database (which was very
simple at the time, containing a single spot in spotData
and spotInfo). The database could then be viewed on
the Firebase website to see if it was being modified
correctly.

A basic website was created to have a space for the
parking-lot map. The map included a text box and two
buttons that allowed a user to manually take or release a
spot based on the spot information in the text box. This
spot information was used to modify the database to
reflect the choice made to either take or release a spot.
The website listened for changes in the database and
updated the map asynchronously based on the changing
of the color field in the database.

IV. TESTING AND INTEGRATION

Testing began with the prototype that was developed
to validate the project after the switch from RFID to
QR technology was made. The simple prototype of the
Swift Park system allowed us to verify that each piece
was capable of functioning as intended.

1) Client Operation: Each stall is equipped with
a QR code that holds information about the stall.
Specifically, each QR code contains the URL of the
website and a value that identifies the specific parking
spot.

The interaction between the car and parking stall was
simulated by bringing up a QR code on the laptop and
using the camera to take images of the QR code. The
camera was slowly pulled back and steadied to allow
it to take an image. Each time it was successful the
camera was moved back further. The max distance was
approximately four feet for a screen-sized QR code,
which is a reasonable distance considering the location
of the QR code in comparison to the car in the parking
space.

The QR codes were generated using qr-code-
generator.com. The scanned code was processed in
OpenCV and handed off to ZBar. Zbar stored the QR
code’s information into a file which was printed to the
screen and compared against the QR generated.

The active client-to-controller IoT protocol was first
tested by creating the JSON object to be sent to the
controller and then printing it out on the screen. Once
it was shown to be correct, the Python socket was setup
using the URL of the server/controller in the CADE lab



on port 2113. The JSON object was then sent using the
Python socket and was validated on the controller side.

2) The Controller: The controller, coded in Python,
was validated by passing in a JSON object from the
command line similar to what the client would send.
Once the controller was invoking the correct functions
from the custom Python API developed for the con-
troller based on the JSON input, the output meant for
the database were tested by printing out the database
queries and JSON objects that were to be sent to the
database.

3) Website Testing: Testing of the website was pri-
marily a visual task. Changes to the source can be seen
easily on the website, so testing consisted of making
alterations to the HTML or CSS or JavaScript and then
engaging with the new functionality on the website.

The application prototype included a text box at the
bottom of the map that took a value corresponding to
the parking-stall number contained in the database. Two
buttons were next to the text box—one labeled ”Take”
and the other ”Release.”

The ”Take” button would use the stall number en-
tered into the text box to modify the database so it
showed a car parked in the stall. The database could
then be pulled up to check if the change was made,
and it could be confirmed by looking at the map to see
if the spot corresponding to the number entered had
changed from red to green.

The ”Release” button would again use the number
entered to change the corresponding parking space’s
entry to mark the car as having left the spot. This could
then be confirmed by checking map to see the if the
spot had changed from red to green.

The user accounts were validated in a similar fashion
as the application. Account creation was easy to verify
as the account data entered by the user is shown on the
Demo-App page after they create their account. The
same thing happens when a user logs in. The database
can be verified easily visually.

The development and testing of the website was
made easier by the developer tools embedded in Safari.
Safari isn’t the best browser, but the debugging tools
it includes that allow you to see the source code of a
web page, set break points, and step through code was
a great boon during the web-development portion of
the project.

A. Integration

Integration in Swift Park was a fairly simple task.
This is because each major piece of the project is fairly

discrete, meaning that once the client or controller or
website worked appropriately, there weren’t many in-
teractions that could negatively impact the functionality
of those connected major modules. The data passed
from client to controller and vice versa is simply a
JSON with no more than three fields. The controller’s
interaction with the database is equally simple once the
Python code to index the database was worked out. The
controller provides the database with a JSON object
that it places at the path provided. Lastly, the interaction
between the website and the database is similar to the
controller-database interaction. The database is being
queried using JavaScript to retrieve JSON objects, and
JavaScript is used to push JSONs to the database.

The original integration occurred with the prototype.
After the switch was made from RFID, the prototype
began with scanning and processing QR codes in the
client. Once the QR codes were shown to be correct,
the client began compiling the JSON outputs to the
controller and printing them out.

After the JSON outputs of the client were tested
and shown to be correct, the client was connected to
the controller using a Python socket. To validate the
connection between the controller and client, the JSON
received by the client was printed out and checked
against the JSON sent by the client. The controller-
to-client protocol was tested in much the same way.

The controller was then tested by seeing if the
custom API’s functions were being correctly executed
based on the JSON input from the client. Each method
printed out a sentence stating that it had been invoked.
Once all the methods were being called correctly, the
controller was connected to the database. Validating
changes in the database made by the controller was
simple due to the easy interface of the Firebase website.

Lastly, the website was connected to the database.
Again, validating the interactions between the database
and the website was simple because there are many
visual indicators that make it clear whether the modules
are connected correctly.

The significant modularity of Swift Park made it
easy to identify and resolve issues when connecting
any of the larger pieces together of the project together.
Validation within a major module was generally more
difficult to do.

V. ACKNOWLEDGMENTS

There are a couple of resources that should be
acknowledged for providing significant support to the
project.



1) SkyRFID: SkyRFID saved us a lot of time and
energy by informing us that it would not be possible
to implement Swift Park as planned with RFID tech-
nology. They motivated the switch to QR technology,
which was a great fit for Swift Park.

2) W3Schools: W3Schools, a website dedicated to
programming tutorials, provided significant support in
learning web development. None of the team members
had any exposure to web development before this
project, so W3Schools was an invaluable resource in
learning JavaScript, HTML5, jQuery, CSS, Bootstrap,
and about web development in general.

VI. CONCLUSION

The world is becoming increasingly connected, and
the internet of things is the next logical step in the
evolution of the internet. Searching for convenient
parking is an unnecessary activity no one wants to
engage in, and an intelligent lot-monitoring system
can utilize the internet of things to decrease the time
and effort required to find and pay for parking. Other
lot-monitoring systems oftentimes require the users to
drive into the lot before it is possible to determine if
there is any available parking. Swift Park removes this
inconvenience through a free website that allows users
to see if the lot has available parking long before they
are on location, and provides users a way to pay for
parking without the hassle of using parking meters or
apps where you have to guess how long you will be
parked.

Swift Park was an interesting and enriching senior
project for us because it required an understanding
of modern networking infrastructure, it necessitated
the design and implementation of custom software, it
required us to learn web development, and we had to
be able to make use existing hardware and software
to make a new product. The project was software-
heavy, but we were able to address this issue in part
by creating a headless display for the Raspberry Pi
consisting of LEDs and switches that allowed the client
to interact in a meaningful way with the Swift Park
system.

The project also required us to evaluate and mitigate
risks as they arose. We were originally going to use
RFID technology instead of QR codes, but we took
the initiative and spoke with people in the industry
that advised us that it would be very difficult to make
the RFID technology work with the project. With this
information we made the decision to move to QR
codes, which proved to be a great fit for the project.

Swift Park as an application for the internet of
things demonstrates just how powerful the internet can
be. With QR technology, there are so many possible
applications that can simplify and enrich our lives as
data capture through cameras becomes more and more
common. RFID will also be a great avenue of explo-
ration as the technology matures and allows for longer
range scanning without significant interference. The
internet has been a wonderful tool to share information,
and the next stage in its evolution, the internet of things,
will enhance the our environment as every item will be
capable of communicating and sharing with the world
around it.

REFERENCES

[1] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy,
“Smart objects as building blocks for the internet of things,”
Internet Computing, IEEE, vol. 14, no. 1, pp. 44–51, Jan. 2010.
[Online]. Available: http://dx.doi.org/10.1109/mic.2009.143

[2] “Individual parking space monitoring - sensors.”
[Online]. Available: http://www.swarco.com/sts-en/Products-
Services/Parking/Detection/Individual-Parking-Space-
Monitoring-Sensors

[3] K. Grifantini, “Find a parking space
online,” Jul. 2008. [Online]. Available:
http://www.technologyreview.com/news/410505/find-a-
parking-space-online/


