
Lego Battle Bots
John Chambers, Kyle Graham, Kenneth Hunter

Abstract—Despite the enjoyment the modern world has experi-
enced from demolition derbies and battle bot contests, a common
issue for these events is the inability for all competitors to
participate in subsequent matches. Instead of simple destruction,
this project provides Lego battle bots capable of multiple rounds
of combat. The battle bots are comprised of a Lego shell that
has parts capable of coming off of it, and is armed with either a
sword, axe, or lifter to dismantle other Lego shells in a combat
game.

I. INTRODUCTION

Modern demolition derbies, especially those involving
robots, have seen a resurgence within the past few years.
Although these events are entertaining, they only leave a
victor with a semi-functional system. In an attempt to create
entertaining devices for home use, there is still a need for
systems which can both be demolished and reused. Combining
software and hardware, there is a potential solution to provide
both the entertainment and the destruction that these demoli-
tion events provide to observers and participants. This project
involves the creation of “battle bots” which are able to be
reconstructed after each individual event. In this way, devices
are still able to tear each other apart and be used multiple
times without the need for new components.

Instead of simple destruction, this project provides the same
level of entertainment as the previously mentioned events
while being able to reconstruct devices after a match has
been won or lost. In this way, participants are still able to
experience the destruction common to related events, and reuse
their creations continuously. Each component within the battle
bot device is able to be removed, thus disabling it. A bot is not
declared dead, however, until all of its armor panels have been
removed. Each battle bot has a total of three armor panels that
can be further connected to other Lego bricks, thus allowing
for a creative approach to armor usage.

This project provides user configurable battle bots. Each
bot is be powered by a Raspberry Pi and controlled through
a smart phone app over Bluetooth. Bots are interconnected
through a local network, thus allowing them to share data. Bot
assembly includes the form of locomotion, some armor panels,
and weapons. Once a bot is started, the provided Android
app allows a user to select the appropriate weapon and begin
combat. Each bot is then controlled through an individual’s
smart device, and continues to remotely update until it is
defeated.

The game begins when users assemble their battle bot out
of a selection of premade armor panels, weapons, and form of
motion. Each type of accessory, armor, weapon, locomotion,
will all fit only into slots designed for them, to prevent
incorrect information being sent to the app. This is enforced

through the project’s custom quick connect mechanism. Once
the battle bot is assembled, it will be paired with the app, and
the user will select what weapon and locomotion is attached in
drop down menus. Once these steps are done, a bot is entered
into battle.

Within the battle bots Android app, users will move their
bots around while trying to use their weapons to knock the
armor panels off their opponent. How the user knocks off
armor depends on the weapon. A spinning blade or flail will
remove them from striking the opponent, while a bulldozer
blade will ram directly into their opponent. Armor panels make
up the health of the battle bot. When a bot loses all of its armor
panels, it stops and the user is alerted that their game is over
through the Android app. The last player alive wins, and is
able to exercise their bragging rights.

II. BACKGROUND

Each individual battle bot consist of a Raspberry Pi with a
motor driver system, and an accompanying Android app. The
finalized project provides both a functional battle bot, and an
intuitive Android application. Both communicate through sev-
eral custom APIs to allow for quick and seamless use. In short,
each battle bot is capable of: movement through Bluetooth
control, detection of various parts and modification of Android
application info, degradation of functionality correlating with
damage sustained, and participating in a fully functional game
allowing players to compete using their own custom creations.

Creating the aforementioned battle bots required a system
that is small enough to drive the logic needed for proper
destruction and part detection. It is fortunate, then, that pocket
size computers have made many advances within the last few
years. In particular, a Raspberry Pi not only contains the
necessary interfaces to communicate with custom components,
but it is also able to provide two steady interfaces for com-
munication between itself and other devices: Bluetooth and
WiFi. Each battle bot is controlled through a mobile phone
app over Bluetooth 4.0. This controller not only supports
movement of an individual bot, it will also handle activation
of any custom parts applied to an individual vehicle. Custom
parts are simply components that provide a certain method
of destruction to another participating bot. These components
directly communicate with the Raspberry Pi to indicate their
presence on a device, and their current functionality level.
These functionality levels will affect the performance of each
component, and the bot itself. Once a device has lost all of
its armor, it will cease to function and the final functioning
device is declared the winner.

Raspberry Pi devices have become commonplace within
the last five years. Their simple interface for General Pur-

pose Input and Output (GPIO) makes interacting with other
components simple, and allows for various functionality to
be added to the small computer. This supported the project
perfectly, as each individual battle bot requires a networking
interface, Bluetooth capabilities, and enough power to drive
a bot’s four wheels. Utilizing various information from the
following projects, each battle bot is individually controllable,
and self contained.

Convention for remote control uses radio signals, but for
short distances between user and vehicle a smart devices
Bluetooth adequately covers a large room. When working
indoors, devices can take advantage of WiFi networks instead
of either radio signals or Bluetooth. The WiFi RC Car project
demonstrates the ability for any WiFi compatible device to
control an RC Car [1]. As the Raspberry Pi is both WiFi
compatible and able to act as an RC device with proper
components, this makes it the core of many projects. This
same project also highlighted the necessary information to
provide a functional server module for bots to communicate
over. Due to the provided information, the battle bots project
also uses a Raspberry Pi as the core component running the
battle bot. This provides numerous options for how the user
will connect the app to the battle bot and receive updates.
While the main method of controlling a battle bot is through
Bluetooth, a remote server is still used to handle game states.
Both of these are fully customizeable in an effort to provide
users with flexibility based on the location of use.

The Raspberry Pi contains GPIO pins for connection of
various modules, including multiple motor controllers and
other sensors. These pins are able to provide different pulse-
width modulation signals to the attached motors, but motor
controllers provide power to the motor itself. In a project by
K. Dumbre et al, a Raspberry Pi controls multiple motors and
sensors powering a remote vehicle. This remote vehicle had
motors for movement as well as an arm to interact with objects
in the environment and the user observed all of this through
a camera mounted on the robot [2]. In a similar fashion, we
have created a small bot controlled through a Raspberry Pi
that uses traditional wheels for movement. It is capable of
moving forward, backwards, left, and right. These four degrees
of movement are handled with a singular motor and servo,
leaving enough pins for all other components. Although an
arm is not used for interaction, similar principles have allowed
the project to read armor state, and control weapons.

In a Raspberry Pi controlled arm project K. Premkumar et
al, created a robotic hand meant to replicate movement of a
human hand. In this project an Android app was created and
it would send a set of predefined signals to the robot hand.
The user could select from several options and the hand would
preform said actions [3]. In this project we created predefined
commands for several of the weapons. The accompanying app
provides a specific interface to manipulate bot movements. For
example, weapons all function from a primary button within
the Android application. For the user, they would tap the
weapon button in the app, and the app would send signals
for the motor to raise up to its set maximum pulse-width.

As long as the weapon button is held it remains at max
position, when released the app handles the signal to lower
to minimum height. The accompanying Android application
features options to connect to a battle bot, store game session
data, and features intuitive touch controls and buttons. Each
individual button allows a user to control the battle bot without
needing to look at the app.

III. PROJECT IMPLEMENTATION AND PERFORMANCE

A. Hardware

Each bot has four main hardware components. The first is
the Raspberry Pi, the Raspberry Pi functions as the control for
every part and the relay between the server, app, and hardware.
The second is the power module, this is a battery and a
breakout module to allow multiple devices to pull from the
same current source. The battle bot must be mobile and trailing
power wires severely limits that ability. Modern battery packs
are readily available and easily provide the require outputs in
both voltage and current. These usually come in the form of
mobile chargers for phones and tablets. The easiest to use are
those with multiple USB ports and support multiple device
charging at once. This allows the Raspberry Pi its own direct
supply and the second goes to breakout module. The breakout
module is useful to connect the different motors to. The supply
provides enough current to run all three motors from one USB
port but not enough to run the motors and the Raspberry Pi.
The third module is the motors, these can be grouped easily
because they are all pooling current and voltage from the same
power module. The base battle bot require three motors, two
servo-motors and one DC motor. The two servo-motors are
split one for the weapon and one for the steering. The DC
motor is the main drive and needs to be connected to a motor
controller and a voltage stepper. The motor controller allows
the motor to run in both directions controlled by the Raspberry
Pi, and the voltage stepper bring the 5 volts breakout module
to run at 12 volts for the line to the motor controller, see
Fig. 1. The fourth and final part of the battle bot is the shell.
The shell is mostly just a hard container to protect the more
delicate electronics but it does have the armor circuit attached
directly to it.

The power module and the Raspberry pi fit up into the shell
and the shell is closed up. The core of the shell is a 3d printed
frame to cradle the Raspberry Pi with Lego’s attached to it that
the walls of the shell attach to. The motors all have Lego’s
attached to them so they can be attached to the shell. The wires
connect to a quick connect system that connects allows power
and signals to pass through the shell of the battle bot. The
quick connects are wires attached to magnetic connectors and
the motors or the Raspberry Pi. The quick connects on the shell
are organized into patterns that prevent incorrect attachments
of motors. Each motor has its own corresponding magnetic
pattern. These magnets are glued into Lego blocks to preserve
those patterns. The quick connect for the servo-motors have
three connections, +5v, ground, and signal. The DC motor
has just two attachments positive and return. The armor that
attaches to the shell is Lego’s glued together to create larger

Fig. 1. Schematic

blocks that are easier to remove during combat. The armor has
a magnets embedded into it to activate the armor circuits inside
the shell. The armor circuit is a hall effect sensor with a 10k
ohm resister between power and out pin to pull up the voltage,
this causes the pin to go low when the armor is attached to
the shell. Additional passive elements can be attached to the
shell, such as additional wheels for stability or mini figures
for aesthetics.

Development of the battle bot was different iterations of
the shell. The first version protected only the Raspberry Pi
leaving all the other parts out. The second version contained
all parts but the limited space made packing all the electronic
inside difficult. The third and final form gave room for all the
parts to easily fit in the shell and to have an insulator between
parts to prevent any cross currents damaging parts. The quick
connects were developed along the way as originally a way to
make testing easier and kept for user convenience in the final
version.

The overall cost of a bot came to $108.58. This is about
where we planned to still be considered acceptable. The price
could be dropped quickly if any of the parts can be bought
in bulk, such as if someone were to assemble several at once.
The majority of the expense is in the Raspberry Pi and the
battery. The breakdown is for the basic unit which is a shell,
one weapon, steering, three armor panels, drive motor, and all

connections needed.

TABLE I
AVERAGE BATTLE BOT COST BREAKDOWN

Price List
Part Quantity Price
Raspberry Pi 1 $35.00
Lego Sheet 1 $10.00
Lego Wheels 1 $3.50
Lego Weapons 1 $0.15
3D Core 1 $0.80
SG90 Servo Motor 2 $1.80
DC Motor 1 $1.50
Motor Driver 1 $10.37
Power Breakout Module 1 $7.50
Voltage Step Up 1 $7.74
Magnet 22 $0.11
Battery 1 $20.00
USB Cable 2 $3.00
Total Price $108.58

B. Software

In order to reduce the complexity of creating a new battle
bot, a Setup module was created to provide easy implementa-
tion of both a bot client and a bot server.

Flow.PNG

Fig. 2. Necessary Setup Flow for Implementing a Battle Bot System

The process of creating a new bot or server thus follows the
flow outlined in Fig. 2, and results in a fully functional system
provided both a client and server are present. Throughout the
process, a user is first asked to select the type of system they
are trying to implement: client or server. Once this is done,
several calls are made to apt-get to install the necessary pack-
ages for the specified system. After ensuring these necessary
libraries are installed, the appropriate service files are moved
into their correct spots and a simple reboot will launch the
client or server. Alternatively, one can move into the Bluetooth
folder and run “sudo python3 BluetoothControl.py” to launch
their client immediately. This setup is done entirely through a
bash script executing the requisite commands on the Raspberry
Pi.

Each individual battle bot performs communication with
an Android application and a remote server. In order to
achieve proper communication between the Raspberry Pi
and the Android application, this project used Bluetooth and
conformed to the serial port protocol (SPP). To send data to
other participants, however, this project made use of a remote
server that could provide updates to bots directly. Without
this remote server, it would have been much more tedious
to properly update individual battle bots. Instead, the remote
server allowed for all code to logically fit within four distinct
modules: Bluetooth, Movement, Networking, and Setup. As

such, the following descriptions involve each module’s logic
and functionality.

As previously mentioned, Bluetooth would be the only
means of communication between a battle bot and a phone. In
order to achieve communication between the Raspberry Pi and
the Android application, the Bluez library would be utilized
with a reliance on Bluetooth’s SPP. As SPP requires a server
and a client, the battle bot would function as a server to receive
commands from its android clients. Once a client was found,
the Raspberry Pi would immediately begin to send it’s armor
status back to the Android application. This allowed for sub-
100ms updates on the Android device for a bot’s health. Before
the first armor update would be sent, however, a separate
process would be spawned to read any available data sent
from the Android client. Thus, messages would be send to and
from the battle bot as fast as possible and prevent unnecessary
lag between the Android application and the bot. Although
this was not necessary for armor updates, which are currently
delayed, it was imperative to allow for proper movement of a
bot itself. Any introduced delay would have made controlling
a bot sluggish, and unenjoyable.

Communication delay within the Lego battle bots project
was the number one challenge to handle. Although Bluetooth’s
delay was managed, we also needed a way to ensure movement
and GPIO manipulation would not interfere with local or
remote communication. As such, each individual movement
component was created within its own python module. Al-
though each module controlled a specific component on the
battle bot, their baseline implementation followed a common
flow: first read the input piped from the main Bluetooth control
file, and then parse the command to produce a result. For
example, the front wheels module will first await input on the
input pipe that is shared between it and the Bluetooth module.
Once numeric data is received, the front wheels module then
adjusts the pulse-width modulation of the servo controlling the
front wheels, providing rotation in the correct direction. The
remaining movement modules also follow a similar pattern to
provide the correct outputs on their assigned GPIO pins.

Perhaps the most critical part of the battle bots code was
implementing armor state changes. Although most movement
components require input to describe output, the armor panels
required precisely the opposite: any new GPIO change had
to be sent as input to the main Bluetooth module. In order
to handle this, armor status is run immediately after the
Bluetooth module starts. Unlike the movement modules, the
input between the Bluetooth module and the armor module is
not shared. Instead, the armor module’s output is sent to the
Bluetooth module’s input to allow for reading armor updates.
Fortunately, armor updates are quite small and consist only
of the string “False:False:False” when no armor is connected.
Connecting one piece of armor provides the Bluetooth module
with “True:False:False”, where the True value appears in the
armor slot that is occupied. These simple strings are then easily
parsed, and the resulting state is then sent to a connected
Android client to update a bot’s health.

Although individual bots can handle their armor state, they

lack the ability to handle a global game state. As such, a
remote server became necessary to allow for game state to
be synced between each individual battle bot. The server is
another python module that can register clients and update
game state. Currently, the server’s biggest function is to ensure
that users do not try to reattach armor panels once their bot
has entered combat. To handle this, however, much of the flow
between a bot and its armor panels needed to be handled on
the server side.

Fig. 3. Armor Connection Flow

As seen in Fig. 3, armor updates must first travel to the
remote server to ensure they have not been added after a bot
has begun combat. If and only if a bot is not in combat,
the server then broadcasts a message indicating an add and
the client id where the add occurred. Each message takes
the format of “statusCode: addedItem clientId”. These status
codes can be expanded on, and allow for a consistent way
for clients to observe each other. This not only preserves
game state, but it allows for future modification if a skillful
player wishes to change when items are allowed to be added
and removed. Finally, the server also handles abrupt client
disconnects. If a bot suddenly loses power, or is temporarily
unable to communicate, its current socket is closed but its IP
is saved with its client id. Thus, when a bot disconnects and
then reconnects its previous state is still used to handle game
interaction. This is yet another method to ensure no armor
manipulation occurs, but it also functions as a way to make
connection more robust.

Overall, the software performance on the Raspberry Pi has
proven to be reliable and quite robust. Setup is quite trivial,
and allows access even to those who may be uncomfortable
with Linux-style systems. Network performance is reliable,
and perhaps the only real issue with communication comes
from the discoverability of a bot when using the accompanying
Android application. This process can take upwards of ten
seconds, but is largely due to the Android application itself.
If a different Bluetooth scanner is used, the device shows up
almost instantly.

C. Android App Functionality

One of the goals of this project was to have a seamless
controller experience. We wanted the Lego Battle Bots to be
controlled with a very simple joystick and button functionality
that fits into the palm of your hand and has fast and responsive
communication. We also wanted it to be easily accessible and
not add to the cost of the project, so we opted to build a simple
and stylish Android app that connects to the bots via Bluetooth
and controls movement and attack functions. Our goals for
this app were to connect to a battle bot, control motor speed,
directional movement, and attack commands, save game data
to a player’s account, and keep track of armor so that when
the battle bot loses all of its armor, the game ends. We used
Android Studio to design this app, with Kotlin and Java as
our programming languages of choice. In Android Studio, the
display of each screen is represented by an xml file, which is
connected to a code file called a Fragment. We designed our
app to have a Fragment for each screen of the game.

Fig. 4. How the user navigates to each screen of the Android app.

A simple flowchart of the Android app’s navigation is shown
in Fig. 4. When a user opens up the app, they are greeted with
a cleanly designed welcome screen, shown in the Appendix,
Fig. 6. They have the option to start playing or login to a new
or existing account. If they choose to login, they are taken
to a user account screen, shown in Appendix, Fig. 7, that
gives them the option to register or login to whatever account

corresponds to the text in the email and password fields. There
is some simple error checking on those fields, for example, the
user is required to make their password at least 6 characters,
and also use an email address format for their email. If a valid
email does not exist in the database that is tied to our Android
app, they cannot login and should instead register that account.

For the user database, we opted to use Google’s web-based
Firebase platform. It provided us with an easy and free online
location to store the simple data metrics that we needed for our
user account system. Because Android Studio is partnered with
Google, Firebase integration into the app was very easy. We
simply set up a new database on Google’s Firebase console,
then connected the app by entering an app name and the Debug
signing certificate SHA-1, which is unique to every Android
Studio app. Google provided the Firebase configuration files.
We only had to add commands to import those files into the
build.gradle file in our app, along with the latest Firebase sdk
file. In our current version of the Lego Battle Bots database,
we store user login and password information, with native
password encryption by Google, so no one is able to see user
passwords. In future versions, we will be able to store more
info such as gameplay sessions, user stats, and a leaderboard
to make the competitive aspect of Lego Battle Bots more
dynamic.

Once the user is logged into their account, they are taken
back to the welcome screen. The user will notice their account
name is displayed on all the rest of the game screens. When
the user presses ’Battle!’ they are taken to the Bluetooth
connection screen where they can connect to a nearby Lego
Battle Bot, shown in Appendix, Fig. 8. The code behind the
connection screen scans for Bluetooth signals and when it finds
one, it begins initializing a new battle bot object and begins
the loop of sending and receiving data to the bot. Once the
user selects ’Connect’, they are taken to the next screen where
they can select their weapon, as seen in Appendix, Fig. 9. Each
weapon corresponds to different movement of the battle bot’s
weapon motor, so in the app, the user should select the weapon
that corresponds to whatever weapon was physically placed on
the bot. Once a weapon is selected, the app will include that
weapon’s designated weapon code in the game loop to be sent
back to the Raspberry Pi and translated into the proper motor
movement that makes the weapon attack.

Once the weapon is selected, the user can click the “Battle!”
button and finally start to control their bot in the gameplay
screen, as seen in Appendix, Fig. 10. This screen features
a joystick for movement controls, buttons to send attack
commands to the bot, and a progress bar that displays the bot’s
current armor level, labeled as “HP”. The maximum armor
level is 3 as there are 3 armor connection plates on the current
version of the lego battle bot. The attack button increases an
attack integer every time it is pressed, this attack integer is
sent to the bot as a command to perform whatever attack the
user has selected for the amount of times the button is pressed.
This attack integer was implemented just in case any button
presses were not sent to the bot, but because of the reliability
and speed of our bluetooth connection to the Raspberry Pi,

this issue doesn’t come up during normal gameplay sessions.
There was a second attack button added as a stretch goal to
introduce more variety and dynamics to a battle. This second
attack is not implemented in the current version of Lego Battle
Bots.

Fig. 5. Functionality of the joystick on the bot controller screen

The joystick was implemented as a SurfaceView object
in Android Studio. This SurfaceView could be designed to
look like a physical joystick and configured to move with
user input. As seen in Fig. 5 the joystick frame is structured
similar to a Cartesian plane, with an x and y-axis that go
from -1 to 1, crossing at the origin. This setup contains all
the information needed to control the bot’s movement. The
joystick computes the location on the plane as the user drags
it with the Pythagorean theorem, with a maximum value of 1,1
and a minimum value of -1,-1. This x,y data is sent through
bluetooth to the Raspberry Pi within the bot and converted
to motor commands. When the joystick is at the origin, the
bot stays still. When the joystick is dragged out, it increases
motor speed proportional to the distance from the joystick
origin. The x-coordinate of the joystick tells the bot to steer
left and right. The bot drives right when the joystick is in the
positive x quadrant and left when the joystick is in the negative
x quadrant. Those configurations are reversed when the bot is
driving backwards, which occurs whenever the joystick is in
one of the negative y quadrants.

The joystick data, as well as the attack commands, are
constantly sent to the connected battle bot with a game loop.
That loop runs every 10ms, which is definitely fast enough
for a seamless control experience. Also being communicated
through a different loop is the armor status of the bot. Once
the bot detects that an armor piece has fallen off, the armor
status that is constantly being sent to the Android app is
decreased and the app computes the progress value of the HP
bar based on that armor status, giving near instant updates on
the bot’s health as it is fighting. Once an armor piece falls
off, the app reflects that by decreasing the HP bar. Once all

the armor has fallen off, the app will send a command to shut
down connection to the bot and it will stop sending updates,
disabling all movement and attack functionality. The app will
show the game over screen shown in Appendix, Fig. 11,
where the user has the option to start a new battle, or go to
the welcome screen where they can log into a different user
account, if desired.

Our Android app can be installed on any modern Android
phone running Android Pie or below, allowing that person to
control and play with any battle bot. Each app is tied only to
one battlebot so there is no restriction on the amount of bots
fighting at one time. It’s a simple, inexpensive functionality
that is complementary to the simple, inexpensive Lego Battle
Bots. We achieved each of our goals for making the app
responsive, easy to control, and easy on the eyes. In the
future, we can add leaderboards, weapon usage statistics,
Kill/Death ratios, and store battle sessions to provide users
with more dynamic profiles on their battle strategy. For now,
the functionality of using a simple, stylish app to connect,
control, and battle your bot has been achieved. And once a
battle bot is defeated, it isn’t entirely destroyed. All a player
has to do to start a new battle is place the armor back on the
bot, choose their weapon, reconnect their bot to the app, and
start a new battle.

IV. CONCLUSION

This project fills the space for both Lego enthusiast and
individuals who enjoy Raspberry Pi projects. It is a designed
to be a game for ages 14+ with no real cap on upper range
as individuals with electrical or programming knowledge can
further expand the weapons, armor, and locomotion options.
With an Android app and Bluetooth connectivity, there is
minimal equipment required to seamlessly control a Lego
Battle Bot and store user data. With robust Lego parts they
will be able to be ripped apart and built back up many times.
Should some part wear out or break its modular design with
make it cheap and easy to replace.

APPENDIX

Fig. 6. The default screen when first opening the Lego Battle Bots app

Fig. 7. The login screen on the Lego Battle Bots app

Fig. 8. The bluetooth connection screen on the Lego Battle Bots app

Fig. 9. The weapon selection screen on the Lego Battle Bots app

Fig. 10. The bot control screen on the Lego Battle Bots app

Fig. 11. The game over screen on the Lego Battle Bots app

REFERENCES

[1] N. A. Zaini, N. Zaini, M. F. A. Latip, and N. Hamzah, “Remote
Monitoring System Based on a Wi-Fi Controlled Car Using Raspberry
Pi,” 2016.

[2] K. Dumbre, S. Ganeshkar, and A. Dhekne, “Robotic Vehicle Control using
Internet via Webpage and Keyboard,” International Journal of Computer
Applications, vol. 114, no. 17, p. 15–19, 2015.

[3] K. Premkumar and K. G. J. Nigel, “Smart Phone Based Robotic Arm
Control Using Raspberry Pi, Android and Wi-Fi,” in 2015 International
Conference on Innovations in Information, Embedded and Communica-
tion Systems (ICIIECS), pp. 1–3, 2015.

	Introduction
	Background
	Project Implementation and Performance
	Hardware
	Software
	Android App Functionality

	Conclusion
	Appendix
	References

