
A Novel Wireless Solution for Acquiring and Representing Data on Current
and Past Parking Trends.

Victor Avila, Austin Hinton, Derek Moore, Ian Noy, Jason Parkin
Dept. of Electrical and Computer Engineering, School of Computing, University of Utah

vic.avi88@gmail.com, a33hinton@gmail.com, djmoore89@hotmail.com,
ianj.noy@gmail.com, jasonparkin36@gmail.com

Abstract— Parking spaces can be hard to find in large lots.
Large amounts of time can be spent trying to find an available
space, and when one is found there is a risk of losing the space
to another person. We propose a possible solution to finding
available spaces: an embedded circuit which uses IR sensors
to determine if a spot is taken or available. This information
would then be transmitted to a web server which would then
provide a user interface showing available spots. The results of
the development of the system are presented and analyzed, as
well as a discussion of the system as a whole. We believe that
this system will mitigate the time wasted in finding a suitable
parking space.

I. INTRODUCTION AND MOTIVATION

A. Introduction

As the progression of time marches forward, the popu-
lation of our world continues to increase. As such, there
is a consistent increase in the number of drivers on the
road every year. From 2008 to 2013, the total number
of licensed drivers in the state of Utah increased from
1.75M to 1.9M [1] [2]. The increase in drivers using public
roadways has put additional stress to an already stressed
parking framework in place in our state. This stress has
been notably perceived by anyone who commutes to the
University of Utah (The U), as there has been an increase
in the number of student and faculty commuters who use
private transportation as their main means of travel to and
from said institution. In the same time frame stated above,
the number of students registered at The U increased from
28,211 in 2008 to 31,515 in 2014, an increase of 11% [3] [4].
Of these 31,515 students, 23,907 were undergraduate, and
87% of undergraduate students identified as commuters, i.e.,
not living on school-owned facilities [5].

The staggering number of individuals commuting to the
The U means that finding a suitable parking location can be a
major inconvenience. There is a considerable amount of time
that must be spent in search of a parking space for anyone not
arriving at The U before sunrise. This time wasted can lead to
missed examinations and being late to potentially important
meetings. The problem is such that some commuters have
conceded defeat and either begin their travel to The U hours
before they need to do so, or have opted to take advantage
of public transportation. However, use of these alternatives
has not mitigated the parking problem faced by those who
elect to drive to The U. Furthermore, there are circumstances

in which these alternatives are not an option, such as last-
minute meetings or, more realistically, being late.

In response to this issue, our group aims to mitigate
the headaches that are associated with parking at The U,
primarily with respect to finding a suitable parking location.
We aim to engineer a parking space monitoring system
that tracks whether a parking space is occupied or vacant.
The system will be comprised of sensory nodes that will
communicate with one-another, as well as with a master
node. This master node will transmit all the data for an entire
parking lot to an off-site server, where it will be processed
and the status of each parking space will be displayed
graphically via a user-web interface. Users of the system
will be able to access the web service before they depart
on their commute and formulate a parking strategy, thereby
mitigating the time lost in search of an empty parking space.

While there are other parking solutions implemented to-
day, none have the resolution that we are aiming for. Many
of these systems that are in use today are essentially counters
that keep a running count of the total number of cars that pass
through an entry point. While these systems seem adequate,
they are missing several key pieces of data:

1) Where are the taken spaces concentrated?
2) What is the total number of parking spaces?
3) Cars that have vacated spaces, but not yet exited the

lot/structure.
4) Historical analysis of data for a specific time frame.

For these reasons, we believe that our system is an im-
provement upon existing systems that implement similar
functionality.

The system will be demonstrated in real-time during the
Senior Demo Day in December. We will have the fully-
functional web service displaying data from the server, which
will be acquiring data from a live unit monitoring 4 spaces.
The unit will be located in the parking lot of the Merrill
Engineering Building (MEB). If for some reason we are
unable to place the system in the parking lot, we will
instead place the system in the demo room, or at a hallway
intersection to simulate objects being detected by the system.

B. Motivation

The motivation behind this project comes from frustration,
specifically the frustration that is associated with finding a
parking space in the middle of the day. Each member of the



group has had to, at one point or another, arrive at The U
in the later hours of the morning or midday. During these
times, it is near impossible to find a decent parking spot
with a quick scan of the desired lot. The result is that we,
among others looking for parking, must drive up and down
the rows of cars in hopes of finding a spot that has been
recently vacated or has been overlooked. The act of crawling
through the lot not only wastes time, it also contributes to
the release of excess pollutants into the atmosphere. We
hope that this system will mitigate some of these effects
by informing individuals of open spaces, thereby reducing
the searching, which will reduce the production of exhaust
gases that are a result of crawling around the parking lot.

Additionally, we believe that this idea has the potential
to be marketable. Our primary target market would be
institutions of higher learning with a high percentage of
commuting students. Our secondary target market would
be amusement park operators. Both of these entities have
tremendous problems with parking, specifically with the
difficulties associated with finding a suitable location.

II. BACKGROUND

Parking monitor systems have been around for a while.
The systems come in a variety of technologies that are
designed to monitor parking lots. Most of the systems use
image processing to identify available spots. Other systems
count the number of cars that have entered the lot and keep a
running total of free spaces. The parking lot monitoring sys-
tem that this paper describes is derived from a combination
of these already existing systems.

A. Spot Identification

Patent US7893847 claims that with image processing and
a parking availability determiner, their system can identify
open spots [6]. The system uses image processing to identify
parking spaces with the use of symbols and relays the in-
formation over a network to a central system. Other systems
use image processing to estimate the total number of open
spots available.

Another type of system monitors the flow of traffic enter-
ing and leaving the parking structure and keeps a count of
spot availability. This type of system can be seen at the City
Creek Shopping Center in Salt Lake City, Utah. The system
keeps a running total of open spots per level of the parking
structure and displays the numbers on monitors. This type
of system is popular for larger parking structures.

B. Spot Reservation

Patent US20140249742 A1 describes a way in which
a driver gets matched to an available parking spot. The
software is designed to estimate the time of arrival of
the driver and reserves the space [7]. Other types of spot
reservation is available through web browser assistance. The
system offered by www.theparkingspot.com allows for users
to reserve a parking spot at select airports.

III. PROPOSED WORK

A. Baseline Deliverables

The system will be comprised of two custom printed
circuit boards. One board design will be designated as a
master node, and the other will be designated as a slave node.
The slave node will be responsible for the acquisition of data
for 4 parking spaces in total. The monitoring of these spaces
will be done with the use of infrared (IR) sensors connected
to the PCB. The slave boards are limited to monitoring 4
spaces per slave because of the fact that parking spaces are
easily represented in quadrants, and because of hardware
constraints to be discussed later in this proposal. The slave
nodes will communicate with the master node by use of the
IEEE 802.15.4 communications protocol, known as ZigBee
and discussed later in this section.

The master nodes will be responsible for accumulating the
data from the slave nodes and transmitting the data to the
database. The transmission of the collected data will happen
over Wi-fi, thereby affording us the use of a widely used
communications protocol. The master node will be able to
track at most 32 individual units, each of which will be end-
point slave devices.

The master and slave PCBs will each have headers so that
an XBee−PRO R© 900HP radio can be connected directly.
The radios will be used to implement a master−slave com-
munications network via the Zigbee protocol. This communi-
cations protocol was selected due to its low power consump-
tion and mesh network capabilities. A rechargeable battery
will be used to supply power for both master and slave
devices. The master node will have the CC3200 component
provided by Texas Instruments to communicate via Wi-Fi.
Fig. 1 shows a high-level diagram of the communication
between slave and master nodes, and the master node to
the server. Additionally, fabrication of a plexiglass case is
being considered to ensure the hardware is protected from
environmental exposure.

At the present time, a server has been setup to host the
data being transmitted by the master nodes. The data will be
processed and stored in a database to await usage. The data
will be used by the end user via a web interface. Currently,
the website is being constructed to display the state of the
parking spaces on a graphical representation of the parking
lot. Additionally, the website will guide the user from the
entrance of a given parking lot to the closest available spot.

For the demonstration of the system, we will have a single
master node monitoring two slave nodes, for a total of eight
parking spaces monitored. The reason for the limited scale
of the project is purely monetary. The system should be able
to scale up to an almost arbitrary number of slave and master
nodes, and the ZigBee protocol has been proven to scale up
to 400 nodes [8].

B. Stretch Goals

It is a goal of ours to develop this project in a way that
the end product is marketable. However, the primary goal is
to showcase our engineering ability in designing a system



Fig. 1: High-level block diagram of baseline deliverables.

that has the potential to become a marketable product. If
time permits, the following optimizations to the system will
be implemented, thereby requiring more engineering, as well
as potentially increasing the systems marketability.

The first goal is to create a self-sustaining product by
powering the entire solution with energy harvested from
solar panels. These panels would also be used to charge the
battery packs, and the battery would be converted to a backup
power supply. This enhancement would potentially require a
rework of the currently planned power system. Additionally,
we desire to develop a user-friendly mobile application for
the Android operating system. This application would be a
companion to the web interface, and each will display the
same data. Finally, we want to provide extra features to our
end application. One extra feature has been discussed is the
ability to reserve parking spaces ahead of time for a nominal
fee. This feature would provide useful for commuters that
live far from their destination and would generate extra
revenue for the owner of the parking lot.

IV. SCHEDULE AND WORK ASSIGNMENTS

A. Schedule

A rough schedule follows:

1) By the end of May, we intend to complete the PCB
design and schematic, the design will be sent for fabri-
cation, and parts will be ordered.

2) By the end of June, receive first iteration of PCB and
assemble it.

3) By the end of July, the transmitting station, and
server/receiver will be assembled. We will also be
testing and verifying our board.

4) By the end of August, the web application will be
started with continued testing on the boards and receiver
as needed.

5) In September, we will continue testing.
6) In October, we will start the formal report, and continue

testing as needed.
7) By November, testing is expected to be done with a

finished product. The remaining time will be spent on
finishing the formal report.

B. Work Assignments

To better facilitate the development of the project, the
project has been divided into three major components; em-
bedded software development, PCB design and power system
design, and the server back−end and web interface. Each
member of the team has been assigned to one of these
specific tasks to act as a product owner and project lead in
their corresponding assignment. The assignment decisions
were based on taking into consideration the talents and
engineering strengths of each individual, as well as personal
interest.

Product ownership of the embedded software development
is assigned to Victor Avila and Austin Hinton. These two
individuals have expressed an interest in embedded system
design, as well as wireless communications. Specifically,
Austin will be primarily responsible for any and all ZigBee
protocol related software, and Victor will be responsible for
the Wi-Fi aspects of the project. Jason Parkin expressed
an interest in analog digital circuit design, and is therefore
designated as the primary point of contact for the power
system portion of the project. Derek Moore expressed interest
with PCB design, and has proven to be proficient with the
Altium Designer tool, therefore he will be designated as the
point of contact for the PCB design and the schematic design
for the slave and master nodes PCBs. Finally, due to his
workplace experience, and expressed interest, Ian Noy will
be responsible for the server back−end and the web interface.

Despite the fact that individuals have been assigned spe-
cific tasks on which they should focus their attention, this
does not mean that they are only to work on said tasks. All
team members are encouraged and expected to assist other
members if their assistance or expertise is needed.

V. REQUIRED RESOURCES

A. TI SimpleLinkTMCC3200 Module

The main node of the system will be built around the TI
SimpleLinkTMCC3200 Single-Chip Wireless Microcontroller
Unit (MCU). This MCU is designed with an ARM R© Cortex
R© M4 processor running at 80 MHz, 128 KB of embedded
RAM, and peripheral drivers stored in embedded ROM [9].
Additionally, this MCU includes a 4-channel, 12-bit analog
to digital converted (ADC), which will be used to convert
the signals generated by the sensors into useful information.
The processor also contains a variety of peripheral interfaces
such as SPI, I2C, UART, SD/MMC, and 4 general purpose
timers with pulse width modulation capability. Fig. 2 shows
the hardware overview of the MCU.



Fig. 2: CC3200 microcontroller hardware overview. [9]

Additionally, the MCU contains a complete Wi-Fi network
controller subsystem. The subsystem is capable of commu-
nicating under the 802.11 b/g/n protocols. The subsystem
is implemented with a dedicated ARM MCU, an integrated
TCP/IP stack capable of up to 8 simultaneous socket con-
nections, 802.11 wireless radio and Baseband, and Medium
Access Controller.

B. XBee-PRO R© 900HP

The XBee-PRO R© 900HP is a 900 MHz RF Module that
communicates using the 802.15.4 ZigBee protocol. This
module is incredibly robust, and a complete list of features
can be found in the datasheet [10]. The following is a brief
list of features that made the module an attractive choice.

• The module contains an embedded ARM Cortex-M3
EFM32G230 processor.

• The frequency range of the module is 902-928 MHz.
• The data rate is 10 Kbps or 200 Kbps (depending on the

distance). The data rate of 200 Kbps is achievable up to
an outdoor line-of-sight range of 6.5 km. The outdoor
line-of-sight range is 14 km for a data rate of 10 Kbps.

• The operation voltage is 2.1−3.6 VDC.
• The current for the transmit, receive, and sleep modes

are 215 mA, 29 mA, and 2.5 µA, respectively.
• The supported data interfaces are UART and SPI.
• The module has 4 10-bit ADC inputs, perfect for

handling the inputs from the IR sensors on the slave
boards.

• The networking topologies include DigiMesh, Re-
peater, Point−to−Point, Point−to−Multipoint, and
Peer−to−Peer.

C. Infrared Sensor

An infrared sensor (IR) will be used for detecting objects
within a 5 foot distance of each slave node. The exact sensor
that will be used is shown in figure 3. The IR sensor sends out
a light signal within the infrared frequency range. When an
object is within 5 feet or less the light will be reflected back
to the device where it will be converted to a voltage signal.

Fig. 3: IR Proximity Sensor [11].

An analog output of 2.8 V to 0.4 V is generated with relation
to the distance of the object; 0.4 V for objects at a distance of
around 5 feet, and 2.8 V for objects within close proximity.
This voltage signal will then be converted to a digital signal
through an analog to digital converter on the slave device.
This digital signal will be used to determine whether or not
a particular parking space is vacant or occupied.

D. Information Delivery

Once availability has been identified it is important to
display the information to a user. As described above, some
systems use monitors to display numbers. Other techniques
include webpage browsing, email, and text messaging. In
Catherine Wah’s paper, drivers are notified by SMS and
VoiceXML [12]. VoiceXML is an Interactive Voice Re-
sponse system that connects a caller to a database that
delivers information to the driver through a series of voice
prompts.

E. Server

The server that will be acting as our web host, file sharing,
and data processing will be running Ubuntu 12.04 Server
Edition. The server will have an Apache Server backend,
MySql as the database implementation, and PHP for basic
web hosting and web page programming capabilities. The
server’s domain is p4i.ddns.net. The server can be accessed
through ssh telnet applications for authorized members. The
web hosted pages can be accessed by the public through
the server’s domain name. The server application code will
be written in C, which will process the master node’s data
transmissions. Other packages that are installed on the server
include: git, openssh, perl, python, samba, and webmin.

VI. TESTING AND RISK ASSESSMENT

A. Testing

As is true for all engineering, testing is an integral element
of the process. As such we plan to test consistently as
the project is being developed. For the embedded software
elements of the project, testing will be facilitated through
extensive use of the TI CC3200 Launchpad development



board. This system will also be where all of the development
of the software will take place. Additionally, it will be used
for early-stage system deployment and proof-of-concept. For
the PCB, and specifically the power systems, testing will
be done with the use of schematic simulation tools such as
PSpice. Doing so will help us to quickly determine aspects
of the project that may not work, as well as help with the
overall development of the project. The web interface will
be tested early via a database of test data and a walking
skeleton of a front-end web client. Additionally, the server
itself will be stress tested to determine what type of traffic
load the server can take before reliability of the data becomes
an issue.

B. Risk Assessment and Mitigation

Due to the fact that this project is based on a system that
will be implemented in an outdoor setting, there are several
distinct risks that are involved, the potential for exposure to
the elements being a primary concern. In order to mitigate
the environmental effects that the project may experience,
the system will be placed in a plexiglass enclosure. This
enclosure will be designed such that it is completely wa-
terproof. Plexiglass was chosen for the construction of the
enclosure due to the fact that it will not prohibit the signals
from propagating from the XBee radios or the Wi-Fi module.

Another potential risk that must be addressed is the
possibility of the PCBs not functioning as we expect them
to. This scenario is of particular importance due to the fact
that the PCBs are the cornerstones of the project. Although
every member of the team has had some experience in PCB
design, the collective total is minimal. As such, if conditions
are such that the PCBs are not functioning correctly and
there is not enough time to resolve the issue, the TI CC3200
Launchpad will be used for the demonstration of the system.
However, PCB issues, if any, should arise fairly quickly and
early in the development of the project, and should be found
and resolved with adequate testing.

VII. RESULTS

The sections that follow detail the results of the engi-
neering process for the proposed system. The discussion
begins with an overview of the designed hardware including
the Master and Slave nodes in section VIII. Following this
section, a discussion on the communications systems in the
system is presented in IX. Next, the results are presented for
the data processing element of the system in X. Finally, the
results of the user interface is presented in XI.

VIII. SCHEMATIC, PCB LAYOUT, AND ASSEMBLY

A. Schematics

1) Slave Node Schematic: With designing the schematic
for the slave node, several key components needed to be
placed on the first iteration, see list for requirements.

1) XBee Radio
2) 4 Ultrasonic Sensors
3) Voltage Regulators
4) Source Voltage

The initial design was built intended to use a 9V supply.
This source voltage was selected due to the availability of
9 volt batteries. Once testing began the fist iteration results
showed that the 9V battery depleted at an exponential rate.
Measurements were taken showing that the system drew 1̃30
mA during peak transmit time with four sensors attached, and
3̃2 mA during low power sleep state. A 9V Alkaline battery
only provides 310mAh’s of current. This is not sufficient
enough to power the system over long periods of time.
After this verification a new supply was selected at 5V
rated for 16,000mAh. This provided sufficient current and
voltage to the system. The first version had three low-dropout
regulators (LDO) supplying various parts of the board. The
LDO takes a supply voltage and then steps it down to
an acceptable voltage for various components. The XBee
processor requires a supply voltage of 3.3V. The ultrasonic
sensors have a supply voltage that ranges from 2.5-5.5V.
5 Volts was selected for the sensors. This provides grater
accuracy and longer range of detection. In the last revision
of the board the 5V LDO was removed. With the supply
battery from 9V to 5V this LDO was no longer needed.
An additional 2.5V LDO was added through further testing.
Upon initial testing with the sensors the data being sent
was not consistent with the data sheet. Contacting technical
support verified that a 2.5V reference was needed to be
connected to the Xbee Vref-ADC pin. Once this addition
was made the sensors behaved and desired.

One of the goals the project was to meet was low power
consumption. This was a major factor for selecting various
components. With designing the board one key power con-
sumer was the sensors. Keeping them powered on at all times
was an issue. The first version was to program 4 GPIO pins to
power the sensors. When you wanted to take a measurement
from one of the sensors the idea was to wake it up with a
GPIO line which provides 3.1V, and then take a measurement
by sending a trigger signal. The trigger signal is sent before a
measurement is taken, and alerts that sensor that this is about
to take place. This process requires 8 GPIO pins changing
voltage values during a measurement cycle. When testing
began several issues arose and modifications where needed.
The first issue discovered was with the XBee processor.
Once the XBee was programmed the GPIO lines voltage
values could not be changed. For example if a line was
programmed to be high then it could not be reprogrammed
to low once the program was uploaded to the processor.
With this verification new sensors had to be selected due
to not being able to send the trigger signal. New sensors
where selected that required no trigger signal. If the sensor is
receiving power then it constantly sends measurement values
to the processor. This resolves not being able to reprogram
the XBee GPIO pins. The second issue was not being able to
turn the sensors on and off. To fix this issue the XBee sleep
pin was used. One main reason the XBee was selected for the
slave board was being able to put the processor into a deep
sleep. This was ideal for saving power with programming
the processor to sleep for 1 minute, then wake up to take
measurements, transmit data, and return to a deep sleep state.



Fig. 4: Transistor Load Switch.

The sleep pin was selected for turning the sensors on and off.
With using the sleep pin for powering the sensors presented
another issue. Could the XBee provide enough current to
power 4 sensors. To resolve this issue a simple transistor
load switch was designed. A two transistor IC was selected
for each sensor. The IC contained one NMOS and one PMOS
transistor. The PMOS acted as an on and off switch for the
NMOS transistor. The sleep pin from the XBee was selected
as the gate voltage for this transistor. When the sleep pin
was set low it biased the PMOS transistor to be off which
also caused the NMOS transistor to be biased off. When the
sensors needed to be turned on the sleep pin was set high
by waking up the processor. Once this value was set high
it biased the PMOS to the on state which then biased the
NMOS transistor to be on as well. This allowed the source
terminal to pass the supply voltage of 5V to the drain of the
NMOS transistor, see Fig. 4. This then powered the sensors
to the on state where measurements could be taken. This
resolved the XBee pin issue and also allowed the sensors to
be powered with 5V which is ideal for measurements.

In addition to the transistor switch a buffer IC was added
on the output of the NMOS transistor. This provided a higher
current to the sensors which increased the power supply. On
the final iteration of the PCB zenor diodes where added on
the input to ADC’s. During testing the output of one sensors
had a voltage spike which destroyed parts of the ADC’s of
the Xbee processor. The diodes added at the input would be
be forward biased once the voltage reached 1.8V providing a
path to ground and shorting out the input. This would protect
the Xbee if the sensors produced any voltage spikes. See XV
for schematic design.

In the proposed section the project was originally intended
to use infrared (IR) sensors. Upon testing with the first
iteration of the slave node, the IR sensors verified to work
incorrectly. Further testing verified that the sensors only
detected objects two feet from the slave node. This was not
ideal and further revision was required. In addition to short
range detection the IR sensors worked poorly in outdoor en-

Fig. 5: Ultrasonic Sensor [13]

vironments. Upon analysis, ultrasonic sensors were selected
and replaced the IR sensors. Ultrasonic sensors proved to
be more reliable and worked accurately up to seven meters
from the slave node which was desired. In addition the
ultrasonic sensors worked in outdoor environments which
was also desired. The sensor selected was LV MaxSonar EZ
Series. The sensor inputs and outputs that were used are as
follows. Vcc pin was used for powering the sensors with a
5V supply. The output of the sensor being an analog signal
was connected to the ADC input of the Xbee. The sensors
output ranged between 9mV per inch and 108mV per foot
[13]. Upon final testing the sensors worked as desired.

2) Master Node Schematic: With design-
ing the master node several requirements
where needed, see list for requirements.

1) XBee Radio
2) TI CC3200 Processor
3) USB Interface
4) Voltage Regulators
5) Source Voltage

The TI CC3200 processor contains 64 pins, ranging from
supply inputs, GPIO pins, and pins that need specific mul-
tiplexing. To aid in the design the CC3200, and CC3200
launchpad data sheets were used [8]. These data sheets
provided information and designs for the USB interface,
and multiplexing of the pins. With parts of these designs
implemented into the master node additional modifications
were made. The TI launchpad contained more products on
the PCB than the project needed. Many of the products were
removed to decrease the footprint of the master node. In
addition to the design, an Xbee processor was added to the
master node. This processor received data sent from each
of the slave nodes and then was sent over. See XVI for
schematic design of master node.

B. PCB Layout

The total time spent on the PCB layout was 42 hours
split as follows: 14 hours for the slave node, 27 hours for
the master, and 1 hour for the interface board. Time spent
creating the footprints to be used during layout was not
recorded. While we did not make an estimate on the total



hours it would take, we were expecting the layouts for both
our master and slave nodes to be finished by the end of
June. Because of the need of finalizing the schematic, our
first slave node layout was not sent to be fabricated until
the beginning of July. Our first, and only, iteration of the
master node was not sent out until October. The reasons
for the delay in the master node layout will be described
later on. Since we were unsure of the efficacy of the master
node, we also created a third board which would interface
the XBee to the TI cc3200 Launchpad. This connection
functioned as our master node for prototyping.

1) Slave Node Layout: The fabrication of all of the slave
node boards were done through Circuit Graphics in Salt Lake
City, Utah. This company produces the boards in about five
days, and, following certain specifications, charged the least
amount of money per board. Having the fabrication company
close allowed us to obtain the boards quickly thus allowing
quick assembly and testing. This proved beneficial as we
went through four fabricated versions of the slave node.

The first iteration of our slave node PCB board came from
the fourth version of our slave node schematic. When we
received this first iteration, we discovered a few problems
and potential updates for the next iteration:

• The holes for the headers which connected the IR
sensors to the board were incorrectly spaced.

• It was hard to remember which pins on the headers
connected to the IR sensor pins.

• The word ”PFI” was smaller than expected, and had
plenty of space to have the size increased.

• The spacing of components could be increased to use
more of the board space, and to make placement easier.

In the second iteration, which matched the fifth version of
the schematic, we made the electrical updates necessary as
well as fixing those problems found in the last iteration. We
fixed the spacing of the header holes, spaced components a
little better, increased the size of ”PFI,” and added letters
to the necessary connections for the sensors. There was not
anything wrong with this board, nor with the remaining
iterations. Most of the updates came from changes in the
schematic. One that was not related to the schematic was
learned meeting with Jon Davies concerning the master
node: a different font choice for component labels would
create labels that were easier to read. The third iteration
of our slave node layout matched the ninth version of the
schematic, the fourth iteration of our slave node, which
was not sent for fabrication, matched the twelfth version
of the schematic, and the fifth, and final iteration, of our
slave node match the thirteenth, and final, version of the
schematic. Fig. 6 is the final fabricated slave node.

2) Master Node Layout: The master node layout proved
fairly difficult. Most of this was from our inexperience with
antenna traces, and multi-layered board design. Once the
schematic was completed, placing the components on the
board was fairly easy though there were several paths that
were difficult to line up. Getting the connections to the inside

Fig. 6: Front of Fabricated slave Node.

Fig. 7: Front of Fabricated Master Node.

layers of the board, which were a ground and our main
power supply, also provided some confusion and time usage.
We then got in contact, through email, with an individual,
Michael Hollenbeck, who was willing to help us learn more
about antenna tracing, and provide correction where needed.
We got fairly far along in the process with this person;
however, as we approached the final few questions, we lost
touch with him. Luckily, we were able to get in contact with
someone local, Jon Davies, who was also willing to help us.
We met with him, and he provided some key information
about the ground plane around the antenna trace and how to
properly connect the component pads to the inside layers. We
made a few updates as recommended by him, and then met
with him to go through those changes. Following a few minor
changes, we felt the board was ready to be made. We had
the board fabricated through Advanced Circuits since there
process could handle the pitch of the pins on the cc3200.
They also had a student deal where only one board had to
be ordered for a discounted price instead of three or more
boards. Without this discount, the price would likely have
prevented us from having this board fabricated. Time and
financial constraints only allowed for one iteration of the
master node board to be made (see Fig. 7).

As we were assembling the board, we found a few errors
in the footprints.

• L1, the inductor on the RF line was an incorrect size.
We were looking for an 0402 in imperial, but we
accidentally got an 0402 in metric which is 01005
imperial. We wondered how this would affect the quality



Fig. 8: Front of Fabricated Interface Board.

of our signal.
• The hole sizes for Y3 and J1 were smaller than the

necessary sizes though we were able to force J1 into its
holes.

• The micro-USB connector required four small holes to
assist in a stronger connection to the board, but the pad
layout on the data sheet did not make these holes very
noticeable so they were not made.

If time and finances had allowed, these errors would have
been fixed in the next iteration.

3) Interface Board Layout: Since we were concerned
about master node working correctly, we decided to make
a simple interface board that connected the XBee board to
the TI cc3200 launchpad through the use of headers rather
than wires. This allowed for a cleaner look if we needed to
use the TI Lauchpad instead of our master node. We already
knew that these connections would work so we only needed
one iteration of this board. This board was be fabricated
through Circuit Graphics. The most difficult part of the layout
for this board was to keep in mind that the XBee board
needed to be placed in a specific direction so that its antenna
was not directly over the TI launchpad antenna(see Fig. 8).
Upon receiving the interface board, only two optional ideas
for changes were noticed: putting ”PFI” somewhere on the
board, and a few LEDs that would light up while the XBee
was powered and while it was sending or receiving data.

C. Board Assembly

Both the slave and master boards were soldered by hand.
The senior project lab contained decent soldering stations
as well as an Amscope Stereo Microscope. The microscope
was an invaluable resource in aiding the assembly of the
boards. An alcohol based flux was used to mitigate the
amount of cleanup the board would need after parts were
attached. The solder wire used was a thinner gauge (18-22)
which proved useful for some of the smaller parts needed
on the master board. Four slave boards and one master
board was assembled. The first slave board only had a
sensor header installed just to test the functionality of the
XBee programming. The board ended up being scrapped
since we made an error in the pin assignment. The second
board assembled included spots for current buffers but zero
ohm resistors were used since the current buffers were not
necessary. In the end our third and fourth slave boards
used zener diodes to stabilize the output from the sensors.

Other changes that were not reflected in the layout, but were
solved through soldering was bypassing the 5V LDO. The
9V battery did not provide enough current and was replaced
by a 5V battery. Since we no longer had to step the voltage
down, we had to solder a line past the 5V LDO. Some of the
issues found with the assembly were some parts not solder
correctly to the pads and some of the zener diodes being
reversed.

Jon Davis had recommended buying a stencil for the
master board since there were many components. Stencils are
generally expensive, but through some research online, we
were able to find a website which provides polyimide stencils
at a significantly cheaper price with the understanding that
the stencil is not guaranteed for a large amount of uses. None
of our team members have had experience using stencils so
we asked around, and were able to find a fellow student
to help us, Steve Brown. His recommendation was that it
would be easier for us to not use the cheap stencil and to
solder parts on by hand. Since he was willing to meet with
us and help us to solder on the cc3200, we felt we should
go with his guidance. In the end the master board was not
operational. There were issues with the power and possible
problems associated to smaller parts being soldered. Other
issues encountered with the soldering process was the fact
that the ground plane was exposed for the antenna. This made
soldering difficult for some of the smaller parts.

IX. SYSTEM COMMUNICATIONS

The following sections will present the results of the
wireless communications deployed in the system. The im-
plementation details as well as the results of testing and
deploying a multi-node XBee system are discussed in section
IX-A. Then, the implementation and results of transmitting
the node information to the server are discussed in section
IX-B.

A. Slave Communications

As stated above, communication between the slave nodes
and the master node is accomplished via the use of the IEEE
802.15.4 Zigbee protocol. This is implemented via the use of
XBee radios from Digi International. The slave node radios
are programmed as follows. Each radio has a unique address
that is used as the primary identification for the node in
which it resides. This address is used to differentiate between
radios when processing the data in the master node, and when
processing the data in the server. Further, each radio has
the address of the master node hard-coded into the firmware
so that the radio knows what node to send the data to on
a transmit. The radios are each programmed to sleep for
a specified duration, then wake up for a sampling period.
The radios have four embedded ADCs which are enabled
in the firmware as such; these pins can also be used as
UART interface, and so ADC operation must be set in the
firmware. The input to each ADC is connected to one of the
four connected ultrasonic sensors analog output. The output
of the ultrasonic sensor is what helps determine whether a
given parking stall is taken or empty. The operation of the



sensors is defined previously. Finally, the transmit power of
the radios is set to the highest level in the firmware, and a
data transmission counter is set to 4; this is the number of
attempts the radio will make to send the data to the master
node before discarding the data.

The operation of the slave node is as follows. The radio
sleeps for a specified amount of time, 30 seconds during
testing, and then wake up for 30 seconds. In this awake time,
the system samples each of the four ultrasonic sensors and
latches the values of the ADCs. When a sample is latched,
the data is packetized internally by the slave node and sent
to the master node. This process repeats a total of 4 times
within the awake period. If the master node is not within
transmit range, or if for some reason there is not a direct
connection from a master to a slave node, each slave node
can relay the information to the address of the master node
that is programmed in the firmware. If for some reason the
transmit fails to complete the number of times specified by
the data transmission counter, then the data is discarded.

The results of testing this component of the system are
as follows. Initially, the system appeared to operated as
expected, with a single node communicating with the master
node and data being transmitted, seemingly correctly. How-
ever, we soon realized that intermittent data being received
by the master node was not correct. The erroneous data
was quickly verified through the transmittal of error-packets
(EP), packets with all byte values 0xF, to the master. The
fact that EPs were being reported by the master node was a
definite indicator that the system was not operating correctly.
The issue was investigated, and the source of the issue was
determined to be an improperly programmed XBee radio.
The radio had likely had the firmware corrupted due to a
static discharge to the radio; this was a very real problem as
the functional integrity of the static mats was unknown.

A second data issue that was encountered was that of
a constant sensor data value. This issue was a result of
improper board assembly. The board was designed to use
a current buffer for each sensor in case the current provided
by the radios wake pin was not enough to drive the four
transistor switches described in section VIII-A.1. However,
in the event that they were not needed, a bypass resistor
was placed into the design so the current buffer could be
removed safely. The failing board was assembled with both
pass-resistors and the current buffers, thereby violating the
schematic and producing unspecified behavior.

Once the two previous issues were resolved, testing con-
tinued and yet another issue arose. This time, the data being
transmitted to the master node was correct, but an incorrect
number of packets were arriving to be processed. The cause
of this issue was attributed to interference in the lab where
the development and a majority of testing took place. We
cannot say for certain what caused the interference, but
the theory that interference was the cause of the improper
operation was validated when the system was removed from
the lab and tested; the system resumed working as expected.

After these issues were resolved, the mesh network was
successfully deployed with two functional nodes communi-

cating with the master node simultaneously. The communica-
tion between the slave nodes and the master node was robust
enough that there was no loss of data transmitted even when
the nodes were separated by walls and other objects, as was
expected. The other slave node in the deployed and tested
system operates exactly as specified above, and the results
of the testing are similar.

B. Master - Server Communications

The master node is composed of an XBee radio and a
TI processor, specifically the CC3200 SimpleLink MCU de-
scribed previously, embedded into a TI CC3200 Launchpad.
A description of the operation of the system follows. The TI
CC3200 Launchpad (TI) is mainly responsible of ensuring
that the data generated by the slave nodes is correctly
transmitted to the server. The TI Is connected to an XBee
radio, the coordinator, via GPIO lines and together the two
components are responsible for sending the data generated
by the slave nodes to the server for further processing. The
radio is programmed in a manner similar to the that described
in the previous section, except that the ADCs are disabled,
and the SPI interface is enabled. The TI is programmed with
an application that enables it to pull the data from the radio
when an interrupt is asserted, as well as transmit the data
to an off-site server for further processing. Additionally, the
TI makes use of I/O pin muxing to properly configure the
various GPIO lines to behave as a SPI bus.

The coordinator XBee radio operates as follows. When
a slave radio enters an awake cycle, the data latched from
the ADCs is immediately transmitted to the master node
coordinator radio. The master node radio then takes the
transmitted data and queues it up for transmission to the
TI via a SPI interface. The radio then sets the SPI interrupt
signal low, and the process of dumping the data via SPI
begins with the radio acting as the SPI slave, and the TI as
the master. Along with the data pertaining to the four ADC
from the given slave node, the data packet also contains the
address of the node that transmitted the data, the size of
the data packet being transferred, a checksum for the data,
and other data. This data packet is predefined by the radio
manufacturer and we are not able to modify it. Additionally,
if there is an error in the data transmitted by the slave, or
if there is an error with the functionality of the master node
radio, the radio itself will produce a packet of data where
every byte has the value 0xFF.

The functional purpose of the TI is to accept the data
generated by the slave nodes and then transmit it via Wi-Fi
to the server. The functionality of the embedded application
is presented below. When powered on, the application on
the TI first the necessary GPIO lines to act as a SPI bus,
and configures peripherals such as the Wi-Fi subsystem
and UART to their appropriate states. The application then
connects to the wireless network specified in the application
code. If the connection cannot be made, an error is reported.
Additionally, the application registers an interrupt handler for
the active-low SPI interrupt line in the interrupt table. This
Interrupt Service Routine (ISR) is responsible for transferring



the data from the radio to the TI. After all of these initializa-
tion steps have been completed, the application goes into an
infinite loop that waits for a flag to be asserted. The assertion
of the flag and how the interrupt is executed are described
below.

When the SPI interrupt signal from the coordinator radio
goes low, The main process of the application is interrupted
and the ISR begins execution. Firstly, the SPI peripheral is
reset to its default state, the SPI clock is started, and the data
containers are allocated. Next, the data from the coordinator
radio is clocked into the TI. Afterward, the data is copied to
a global data buffer for processing in the ISR. Throughout
execution of the ISR, information pertaining to the data
packet received is printed to a console via UART for rapid
debugging. After the data has been completely offloaded
from the radio and stored into the global processing buffer,
the data is re-packetized, stripping away data that is not
relevant to a sample packet such as the checksum. Additional
data pertaining to the ID of the master node that received the
data is added, as well as a packet signature to ensure that the
data received by the server is a legitimate. Once the data is
formatted correctly, it is stored into another global buffer and
the ISR done flag is asserted, signaling the completion of the
ISR. When the ISR process is complete and execution returns
to the main process, the flag will be high and the application
executes a server transmission routine to transmit the data to
the server. In the server messaging routine a TCP socket
is created using the network information specified in the
application file. The creation of the TCP socket is abstracted
away via the use of API functions and macros provided by
Texas Instruments. However, the application must correctly
specify the parameters with which to open a TCP socket to
the server. Upon a successful connection, the message stored
in the global pointer is transmitted, and the routine exits with
a success message printed to the console. The flag is de-
asserted in the main process, and the the application again
waits for an interrupt.

The results of the testing are as follows. The system
operated as expected when first fully deployed. The system
was functionally tested with two slave nodes operating simul-
taneously with different wake and sleep periods. There was
no perceived collisions with data packets from different slave
nodes, as was expected. Additionally, the communication
between the application and the off-site server had no issues
with respect to implementation.

There was a major issue relating to authentication certifi-
cates that was encountered when attempting to connect to
the guest network at The University of Utah. We quickly
realized that we would not be able to get an authentication
certificate for our device in a timely manner, so an alternative
network solution was employed. The initial solution callef
for the system to use a Wi-Fi hotspot provided by the team
to connect to the server, however this was impractical, and
a separate access point that used the wired connection was
deployed for our use.

With respect to the integrity of the data transmitted from
the radio the the TI, there was only one minor issue. The data

being stored to the buffers was stored in a big-endian format,
but in a little-endian ordering. the order of data that was
larger than one byte was rearranged, but the total ordering
was preserved. This was a source of much confusion when
debugging, as the data appeared to be incorrect. The cause of
the byte reordering was not found, however the server was
capable of resolving this issue, and will be discussed in a
later section.

X. SERVER AND DATABASE

The following sections present the results of the server
deployment and the database scheme used to represent and
store the data. The implementation and results of testing the
server are covered in section X-A, while the results if the
database are presented in section X-B.

A. Server

The results of implementing the server application for the
system are as follows. Throughout the course of the project,
three different servers were implemented. The first iteration
of the server was a C++ server that ran using the Boost
libraries. The second server was developed in C, and was a
low-level TCP socket server. The third implementation was
a Python server that made use of the SocketServer Python
library and a multiprocessing queue. The implementation
details and test results for each server will be discussed in the
preceding sections. The final server that was deployed and
used in the system was the Python server, and justification
will be provided.

1) C++ Server: The C++ server implementation made
heavy use of the Boost library, specifically the Asynchronous
IO (ASIO) library. This language was chosen for the imple-
mentation due to prior experience held by the team in devel-
oping a server in this language. The server was structured in
a server-session model, in which every incoming connection
has a new session object created. When a incoming message
is detected, an asynchronous callback is executed so as to
not interfere with the main server process. This callback is
responsible of extracting the data that was transmitted from
the socket. The data received was then printed to the console
for debugging purposes, and then stored for later processing.

This server implementation was not fully developed due
to inconsistencies with the data received during testing. The
data that was received by the server did not even closely
resemble the data that was being transmitted by the master
node. Even when the endian-ness of the system, and the
bizarre endian switch discussed in section IX-B, was taken
into consideration, the data was not correct. This issue was
investigated for an entire week, a reasonable amount of
time, at which point an executive decision was made to
investigate an alternative server implementation. Luckily, we
had already prototyped a C server, which will be discussed
in the following section.

2) C Server: The C server was the product of an early
research and development task on the workings of a server
implemented in a low-level language. Due to the fact that



the embedded application was written in C, it was deemed
that a C server would be the best implementation. However,
this idea was shelved in favor of the C++ server, as we
felt confident in the higher-level implementation as detailed
above. The server was implemented with a single server
that handled all incoming connections. Each connection was
assigned a processing thread and allowed to run in its own
context. Additionally, each thread was assigned an identifica-
tion number so it could easily be referenced throughout the
server. These identification numbers were stored in an array,
and removed when the thread terminated. The connections
were serviced by a use of a callback which unloaded the
data from the TPC socket and processed the information.
The data that was received from this server was correctly
formatted with respect to the transmitted packet. However, it
soon became clear that this server would not be scalable for
a multi-master multi-node system, as we had designed for.

The results of testing the C server are as follows. Despite
the fact that the data being transmitted correctly during
testing, other errors arose. The most serious of the errors was
a segmentation fault that was produced after an extended
period of operation. The error would manifest after several
minutes of operation. It was determined that this error was
caused due to the fact that the thread identification numbers
stored in the server, in an array, were never being removed
correctly, and thus an out of bounds array access was
occurring after a set number of connections. While this was
a relatively easy error to fix, it was deemed at this point
that this server implementation was simply not capable
of scaling as we had intended. A decision was made to
research other server implementations that would be better
suited to the scalability that our system was designed for.
The results of the research resulted in the Python server
described below being used in the final implementation of
the design.

3) Python Server: The implementation details of the
python server are presented below. Similar to the C-server,
the Python server consists of a single server that handles
incoming messages asynchronously through the use of call-
backs. However, the Python server makes use of callback
objects, as opposed to a single function that is part of the
server object. Additionally, this implementation makes use
of a Python Multiprocessing Queue (MPQ). The MPQ is
a queue object that can be instantiated in its own process,
and so long as its pointer is passed to another process can
be accessed in n-many processes. The MPQ was used to
queue the incoming message data from the master node. This
implementation was chosen due to the ease of scalability
offered by the MPQ. A functional description of the server
follows.

The server is started via command line. Upon initializa-
tion, the MPQ for the server instance is created before the
server object is. This allows the MPQ to be in the global
scope of the process, and therefore accessible by the server
and callback objects. The port and IP address of the host
are hard-coded for ease of deployment in the main function,

TABLE I: ADC data interpretation

Data Value Taken/Empty Int. Value
data > 0x7b Empty 0
data ≤ 0x7b Taken 1

and the server object is created. The initialization of the
server is as follows. The constructor for the server stores
the parameters passed into it, namely the IP address for
the server and the port on which to listen for incoming
connections. Then, a SocketServer object is created with the
port number and IP address, as well as the class name for the
callback object. Various parameters are set, such as allowing
address reuse, and then the constructor terminates. The server
is then launched in a process separate from the main process,
and the main process is stalled until termination of the server
process, effectively allowing the server to run indefinitely.
The server merely runs forever, waiting for a connection.
When a connection is detected, it creates an instance of
the callback object to handle the incoming communication.
There is only a single function declared in the object, as all
of the code related to the creation of the object is abstracted
away. Upon creation, the singly defined function is executed.
The sole purpose of this function is to take the incoming
data and append it to the MPQ. Once this is completed, the
callback thread terminates. Nearly all of the data processing
is accomplished in the MPQ, which is discussed in the
following section.

The functionality of the Multiprocessing Queue is as
follows. After initialization, the MPQ simply waits for a
specified period of time and check whether the queue has
any elements to process. If there are none, then the MPQ
simply waits and checks again. If there are elements that
need to be processed, the following occurs. The top element
is removed from the MPQ and the bits are unpacked through
the use of the Python Struct library. This library allows
the developers to specify a byte ordering of binary data
processed in an application. With this, we were able to
overcome the endian switching issue that was occurring
with the data being offloaded onto the master node. Once
the data is unpacked and stored to local variables, the data
pertaining to the address of the slave node is analyzed and
checked for any erroneous values. If the address is deemed
to be erroneous, the entire data set is discarded and the
MPQ processes another data set. If the data is valid, the
data representing the outputs of the ADCs is processed.
The unsigned binary value of each data sample is checked
according to Table I, and an integer value of 1 or 0 is
appended to a string representing the order of the spots.

The string representation of the ADC data is printed to
the console for debugging purposes, as well as the address
of the slave node from which this data originated. The data
is then stored on to the database described in section ??, and
the process begins again.

The Python server was chosen as the ideal server imple-
mentation for several reasons. Firstly, the built-in libraries
available to developers allowed us to overcome all of the



TABLE II: Node Data Table

slaveNode parkingSpots
slave1 0000
slave2 1010
slave3 1100

errors that were present in the previous server implemen-
tations. With the SocketServer library, all of the memory
management issues of a server were handled by the library.
We merely had to implement the server using the correct API
implementations. The only major issue that was encountered
was that of a server process persisting despite the application
receiving a process-kill signal. We determined that this was
due to the fact that the signal was not being propagated down
to each child process of the main process, and therefore
any child process, such as the server process, was not being
properly terminated. Once this issue was resolved, the testing
of the Python server was completed without any other major
functional issue. We believe that this was due to the fact
that we had uncovered a majority of the issues that could be
encountered with our particular implementation of the server
in previous implementations. Upon deployment, the server
operated exactly as intended, and was one of the most stable
pieces of software in the entire system.

B. Database

The server implements a MySQL database in order to
keep track of reported parking lot node data transmitted to
the server. Table II illustrates how the slave node data is
being stored in the database. Each slaveNode has a unique ID
which is generated by the XBee processor. The parkingSpot
data is a four bit string representation of the four spots that
the slave node is monitoring. A one asserts that the spot is
taken, whereas a zero means the spot is open. The appServ
application performs an UPDATE statement that, depending
on the reporting slaveNode, will update the database with
the newly captured parking spot data.

The schema is simple yet effective for the implementation
of this system. Once the unique IDs for the XBees were
known, the table was populated with default values of
’0000’ to represent an open parking lot. In order to test the
UPDATE statements we had to have the slave nodes reporting
information to the appServ application. The application used
print statements to validate the parking spot data and this
was compared to the values stored in the database tables.

The main issue in testing the database update was correctly
populating the string representation of the XBee ID and
dynamically updating the tables. The first assumption was
that the values were going to be hexadecimal, but instead
were actually a number representation. Once this issue was
addressed the updates worked as expected.

In addition to the Node Data Table, we also implemented a
reservation table. Table III shows how the reservation data is
being stored. This table is populated through the User Client
website. Once a User has logged in and been authenticated,
any open spot can be selected for reservation. The Spaces in

TABLE III: Reservation Table

Spaces Expiration Time
1A 144976681
1B 144976792
2D 144976814

TABLE IV: User Table

Id userName Password
1 user1 pass1
2 user2 pass2

the table are a string representation of the open spot selected
in the parking lot. The expiration time is a timestamp that
is taken at the time of the reservation. This information is
passed to the database using an INSERT statement generated
from a PHP page. There were no issues found when testing
this functionality.

The last database needed for the parking lot system is
a User database. This database contains the username and
password information for users with access to parking spot
reservation. The format of the user table is shown in Table
IV. The Id is an incremental unique key to identify users.
The userName field is also initialized as a unique key so no
two users can share a login name. The Password field in its
current form will accept any varchar(40) input.

XI. USER CLIENT

A. Main Page

The User Client web application is written with HTML,
CSS, PHP, and JavaScript. The application is accessed
through the web site and the main parking lot information
is displayed in a user friendly table (see Fig. 9). The web
page is refreshed every 10 seconds to display the most up-
to-date information of the parking lot as stored in the node
data table. The main page also displays information regarding
open spaces or spot reservation if the user has logged in to
the website (see Fig. 10).

The main page performs two separate MySQL queries,
as well as a DELETE statement to manage and display the
parking lot data and reservation requests. The first query
selects all data that is loaded to the Node Data Table (see
Table II). This data is loaded to an array for each reporting
node. The first index represents the top left, the second index
for the top right, the third index for the bottom right, and
the fourth index the bottom left parking spot location. If the
value at the index contains a ’1’, then the spot is considered
full and an image of a car is displayed, otherwise the function
checks for possible reservations.

The second query selects all data that is held in the
Reservation Table (see Table III). This data is also stored to
arrays, but first the expiration time needs to be checked. By
default, the web application is set to expire any reservations
after one minute. If the reservation has expired, the entry is
deleted from the table. If a parking spot is not full, but is
marked as reserved then a ’Reserved’ banner is displayed



in the spot, otherwise the spot will display the name of the
location and be visible in the Reserve or Open Spot table
(see Fig. 10).

The main page has a subtle change in formatting depend-
ing on whether or not a user has logged in. Fig. 10 is shown
when the page has detected an authenticated user. Each spot
is a hyperlink for which the user is prompted to accept a
reservation. The programming to capture the OnClick event
is written with Javascript. The selected spot is posted as a
query string parameter which a subsequent PHP page extracts
the parameter and performs an INSERT statement to the
reservation table (See Table III). If the user has not logged
in then instead of having the option to ”Reserve a Spot” the
user will see ”Available Spots”.

The first issue that was encountered in programming the
web application was correctly populating the parking lot data
from the Node Data table. The naming convention that was
chosen to represent the spaces did not integrate well with the
reported data nodes, so the open spaces had to be hard coded.
To solve the issue, the data from each node was loaded to
their own array.

Another issue with the web application was that the cars
were not loading to the correct parking spot. The problem
was that the server application was saving the node data in
descending order, i.e. Spot 4, Spot 3, Spot 2, Spot 1, and
the web application was reporting the spots in ascending
order. To fix this issue we reversed the server application
programming to be aligned with the ascending spot order.

Additional issues with the web application was handling
parking spot reservation. The first was being able to identify
if a user was logged in. The login page was capturing
session ID data, but it was not being passed back to the
main page. In order to resolve the session data, we had
to have the session creation performed in the main page.
Once the session was created in the main page, the login
page could modify the existing session and store the user
name and password. The other issue was determining how
to prompt the user for which spot they wished to reserve.
The first approach was to pop a second page that the
user could select from a drop down box which spot they
would like. The outcome was a clunky page that didn’t
work properly and was not very user friendly. To make a
more streamline selection function, JavaScript coding was
injected to watch for OnClick events. The event identifier
and hyperlink was populated dynamically based on the open
spot name. Once this solution was in place, the reservation
functionality worked as intended.

B. Login Page

The login page is accessed from the main page of the web
application. The page simply prompts the user for a username
and password. The application queries the User table (See
Table IV) and if a match is found assigns a session ID.
This session ID acts much like a COOKIE, where it defines
some information about the user. This application just stores
the username and password of the user if a successful login

Fig. 9: Parking Lot information display table.

Fig. 10: Parking Lot information display table.

occurs. The session data is used in the main page (Section
XI-A).

As described in Section XI-A, there were issues with
passing session data back and forth between the main and
login web pages. Another issue was deciding between using
cookies or session data. In the end we went with session
data due to issues experienced with users not having cookies
enabled in their web browser.

XII. WHOLE SYSTEM ANALYSIS

As a whole, the implemented system behaved nearly as
expected when deployed. The communications between the
slave nodes and the master nodes did not exhibit any errors.
The ultrasonic sensors used did exhibit some undesired
behavior, however we believe that his was due to the system
being deployed in a noisy environment and not in an ideal
outdoor scenario. Additionally, the frequency of the erro-
neous behaviour was such that it did not affect the overall
reliability of the system. The communications between the
master node and the server did not exhibit any erroneous
behavior, and all data that was reported by the master node
was correctly reported by the server, signaling a successful
data transfer. The web interface also did not exhibit any
errors in its output of the data from the database, thereby
proving that the data being stored to and retreived from the
database was consistent. With all of the separate systems
working correctly when deployed as a whole, we conclude
that the deployment of the system was successful.

XIII. SUMMARY

Finding an available parking space can be difficult in
large lots. The difficulty scales up when there are numer-
ous individuals vying for the same space, and when time



constrictions are in place. Through the use of ultrasonic
sensors, XBee radios using the ZigBee protocol, and Wi-Fi
communication, our solution detects open spots, communi-
cates this information to a server, and the data is processed
and displayed in a user-friendly manner. This system has
the potential to mitigate the annoyance and hassle associated
with finding a suitable parking space.

XIV. ACKNOWLEDGEMENTS

We would like to thank Dr. Ken Stevens for his guid-
ance throughout the year. Without his encouragement and
persistent check-ins this project may have ended poorly. We
also thank Alex Ferro for his indispensable help debugging
esoteric circuit issues. We thank our families for putting up
with our late nights working on the project, and for helping
us deal with the stresses of a project such as this. For help
understanding the RF line on the master node layout, we
thank Jon Davies, and Michael Hollenbeck. We also thank
Steve Brown for his help in soldering the cc3200 chip to the
master node.

REFERENCES

[1] D. L. Davenport and D. A. Beach. (2009, Jan) Crash Summary
2008. UtahCrashSummary2008 001.pdf. [Online]. Available:
http://publicsafety.utah.gov/highwaysafety/documents/UtahCrashSummary2008 001.pdf

[2] K. D. Squires, D. A. Beach, and G. D. Mower. (2014, Jan) 2013
Crash Summary. 2013UtahCrashSummary.pdf. [Online]. Available:
http://publicsafety.utah.gov/highwaysafety/documents/2013UtahCrashSummary.pdf

[3] T. O. of Budget and I. Analysis. (2008, Oct) Headcount
Enrollment by Academic Level, Gender, and Ethnicity 2008
Autumn Semester Census. ss0809A02.pdf. [Online]. Available:
http://www.obia.utah.edu/ia/stat/2008-2009/ss0809A02.pdf

[4] ——. (2014, Oct) Headcount Enrollment by Aca-
demic Level, Gender, and Ethnicity 2014 Autumn
Semester Census. ss1415A02.pdf. [Online]. Available:
http://www.obia.utah.edu/ia/stat/2014-2015/ss1415A02.pdf

[5] ——. (2014, Oct) Common Data Sheet. CDS 2014-
2015.pdf. [Online]. Available: http://www.obia.utah.edu/ia/cds/2014-
2015/CDS 2014-2015.pdf

[6] A. Shanbhag, G. Ames, and P. Aaronson, “Real Time Detection
of Parking Space Availability,” Feb. 22 2011, uS Patent 7,893,847.
[Online]. Available: https://www.google.com/patents/US7893847

[7] R. Krivacic, R. Hoover, E. Isaacs, and J. Glasnapp,
“Computer-Implemented System And Method For Spontaneously
Identifying And Directing Users To Available Parking Spaces,”
Sep. 4 2014, uS Patent App. 13/783,070. [Online]. Available:
https://www.google.com/patents/US20140249742

[8] T. Instruments. (2015, Feb) AN123 Breaking the 400-
Node ZigBee R© Network Barrier With TIs ZigBee SoC
and Z-StackTMSoftware. swra427.pdf. [Online]. Available:
http://www.ti.com/lit/an/swra427c/swra427c.pdf

[9] ——. (2015, Feb) CC3200 SimpleLinkTMWi-Fi R© and Internet-of-
Things Solution, a Single-Chip Wireless MCU. c3200.pdf. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc3200.pdf

[10] Digi. XBee-PRO R© 900HP 900 MHz RF
Module. ds xbeepro900hp.pdf. [Online]. Available:
http://www.digi.com/pdf/ds xbeepro900hp.pdf

[11] Sparkfun Electronics. Infrared Proximity Sensor Long Range.
[Online]. Available: https://www.sparkfun.com/products/8958

[12] C. Wah, “Parking Space Vacancy Monitoring,” Projects in Vision and
Learning, 2009.

[13] LV–MaxSonar–EZ. High Performance Sonar
Range Finder. [Online]. Available:
http://www.maxbotix.com/documents/LV–MaxSonar–EZ Datasheet.pdf



XV. APPENDIX A

Slave Node Power Supply.

Xbee and Sensors.



Xbee and Sensors.



XVI. APPENDIX B

LED’s.



USB to UART.

TI CC3200 and Xbee Processor’s.


