
Project TURF :
Smart Sprinkler System with Real-Time Feedback

Patrick Armstrong, Ryan Williamson, Caleb Edwards

Abstract— Watering a lawn is a common activity for almost
every house owner. Deciding how long and at what time a lawn
should be watered can vary depending on where a lawn is
located and what kind of climate is in that location. Project
TURF is intended to solve the problem of time and length for
watering a lawn through automated systems. By using sensor
arrays and a remotely accessible sprinkler controller, Project
TURF will automatically suggest when and for what duration
a lawn should be watered. A user will have full control via
an online user-interface for either creating a custom schedule
themselves or using the automated schedule that was derived
by the system specifically for them. This report outlines the
design and implementation of a Smart Sprinkler system with
real-time feedback.

I. INTRODUCTION

A. Motivation

Watering and taking care of a lawn is a task that can be a
challenge for home-owners. Yet the commercial market has
not completely met the needs of residential owners. There
should be a lot of competition in this market with how
many people are using sprinkler controllers to water their
yards. However, current state-of-the art requires a person
with a sprinkler controller to go to their sprinkler box in
their garage and manually enter times and duration for each
zone in their yard. Few people are confident of how long
or what time of day they should even water their yard; it is
almost an educated guess for most people with controllers.
Based on these times and duration settings that are manually
entered, the old controller will turn on and water that zone
for the specified time duration. Project TURF’s controller
is designed to assist the home owner, and does not require
educated guesses for programming the controller.

Project TURF is a smart sprinkler controller based on
different weather sensors placed throughout a user’s yard.
There are multiple zones controlled by one valve box and
each valve box is controlled by the sprinkler controller. A
zone is a subsystem in a sprinkler system that is controlled
from a valve box, and there can be many valve boxes
depending on the size of the yard and system. Project TURF
provides real time feedback to the user to make informed
decisions about when and for what duration to water each
zone.

This system is based on recommendations sent to the
user through a user interface (UI). There will be sensors
that collect data throughout the day, and the data will get
stored in Project TURF’s controller. The controller will
have a time series database that records all these values.
Based on these results, a predictive algorithm will send a
recommendation to the UI stating a duration and time that

the user should water that zone. The user then can accept
these new recommendations, maintain the default settings,
or enter some manual settings based on their preference.

The controller will collect data from a hub station that
will represent a weather station, as well as data from other
sensors in each zone. This will allow the user to have that
extra feedback on their system, viewed through the UI. Each
zone of the sprinkler system will have different sensors,
including a moisture sensor placed in the dirt of that zone.
The data fed to the controller from these results are how
the recommendations are determined for unique watering
times of each zone. All of the system components and their
relationship to one another are shown in detail in Fig. 2.

B. Background
Project TURF is built around open source material that

is already available on the web [1]. Project TURF will
have a UI that allows any user who has access to view
data collected, and make decisions based on the collected
data. The difference between Project TURF and other open
source projects is that our system provides recommendations.
Based on the data that the system collects, a recommendation
schedule is created on the UI and put in place. The user
will then have the option to change settings in the controller
based on this recommended schedule, or leave it as is. Project
TURF is about providing more control to the user. This
system will not take over and automate everything for the
user, unless it is specified that the user wants that.

Fig. 1. Layout with added implementations.

As seen in Fig. 1, the design of this project is more
complex than standard systems. Sensors will be placed in

Fig. 2. Block Diagram of Sprinkler Controller

each zone of a user’s yard and are expected to send data to
the controller, which can be placed anywhere on the premises
as long as the WiFi signal extends to each device. Each of
the red components in Fig. 1 will be explained in detail in
this paper to provide information on why this is a better
approach for a sprinkling system.

C. Related Work

OpenSprinkler is an open source sprinkler controller
project that uses many of the same elements that Project
TURF uses [2]. OpenSprinkler uses sensors to send data to
the controller, which then has a user interface to display what
is being changed and other data features relevant to the user.
OpenSprinkler uses ESP devices to read in data and send
that data to the controller. The controller uses WiFi which
enables the user to access the UI. The controller developed
in Project TURF will have all of these same features, and
will use WiFi to allow access to the UI.

The OpenSprinkler controller makes changes automati-
cally for the user; for example if it is raining, it will turn
off the sprinklers [2]. In contrast Project TURF will have
a forecast prediction that determines the schedule and will
create a schedule based on that as well as with other data.
If the user decides to use the recommended schedule, they
may. Or they may choose to create any custom schedule that
is acceptable to them.

Another open source project that Project TURF is incor-
porating is called the Sustainable Irrigation Platform (SIP)
[1]. SIP allows for the creation of custom plugins that can
manipulate the base programming and create any schedule
within a seven day period. Our controller uses SIP, but creates
new custom plugins to add more features like scraping
weather data off the web, weather data display, and a relay
plugin to turn on our valves.

D. Project Demonstration

Project TURF will be demonstrated with an accelerated
timeline. Usually this system makes decisions after collecting
data over a 24 hour span. This will not be the case during
the demonstration. The poll time of the sensors will increase
in frequency to once every minute, instead of once every
hour. This data will then be sent to the controller, which
will process the data and create a schedule based on the
accelerated data timeline.

To simulate the data collection, a box of dirt will be used
as one of our zones. We will manually water the dirt to show
the change of moisture from the soil sensor.

To show that the relay board works, the relay will be con-
nected to three different valves through which compressed air
will flow. The sprinkler heads will pop-up, signaling when a
valve has been turned on.

II. HARDWARE

A. ESP32 Microcontroller

The ESP32 is a low cost microcontroller that is being used
to connect to different sensors via I2C protocol and send data
over WiFi. The ESP32s has a 32 bit microprocessor with
520KB of SRAM and 11MB of instruction memory [3]. This
is sufficient to do most small computing and is adequate for
Project TURF.

Fig. 3. ESP32 with Bluetooth and WiFi capabilities.
[3]

As seen from Fig. 3, the ESP32 is a small controller that
can be placed on a PCB and will fit in an irrigation box
with ease. It has enough input pins to connect to at least two
sensors over I2C. This will allow the collection of sensor data
from any sensor that has I2C communication. The ESP32
even has the ability to communicate using the SPI protocol
if faster or different communication is needed.

The ESP32 can also come equipped with Bluetooth and/or
WiFi chips. This allows for wireless communication for
the sprinkler controller. The ESP32 can gather data over
I2C, format the data with its processor, and then transmit
the data over a wireless protocol. WiFi is the choice of
communication for Project TURF.

B. Raspberry Pi Model 3 B+

The Raspberry Pi Model 3 B+ is the main controller of
Project TURF. It hosts the database, the Pi Server, and the
SIP software. The database stores all the system’s weather
and sensor data. The Pi Server comprises the Mosquitto
MQTT broker an a local weather web scraper. The SIP is
the UI upon which Project TURF is built. The Raspberry Pi
specific Linux OS–Raspbian–will be installed on the Pi in
this project. It is a Linux distribution which was primarily
created for the Raspberry Pi.

The main programming language used on the Pi is Python
version 3.6, which will be referred to as Python3. Python3
comes installed with the Raspbian OS and will be used
throughout the project. To make sure that all future users of
this project are up to date with the necessary Python libraries
and modules, we are using Python’s Package Installer (PIP).
PIP provides the ability to capture the current package list
used in a requirements.txt file. Any device using pip can then
install all the required libraries on their Python environment
using this text file.

Fig. 4. Raspberry Pi 3 Model B+
[4]

Fig. 4 shows an open and uncased Raspberry Pi Model
3 B+ board. This is to show what the Pi provides as far
as specifications for use. When in application use, it will
only need to be plugged in through the micro USB port.
This will give it power, and upon boot it will initiate all the
applications necessary for the controller to run.

The Pi has an HDMI output that can be used for config-
uring and debugging the device. It has four USB slots to
connect a mouse or keyboard. It also has a WiFi chip on-
board to allow connection to a network. The memory of the
Pi is contained on an external SD card. On this system a
32GB card is used. After the OS and all other installations
take place, the memory card has roughly 20GB of memory
remaining. This is what the database will use long term. If
this proves to be insufficient, a user can use a 64GB SD card
or they can switch to storing data to the cloud.

Fig. 5. BME680
[5]

C. BME680 Sensor

The BME680 [5] from Adafruit is a 4-in-1 digital sensor
capable of gathering temperature, humidity, pressure, and
air quality. The sensor uses the I2C communication protocol
to send/receive data, and it is commonly used for at-home

weather stations and air quality measurements. Project TURF
uses the BME680 to detect spikes in humidity and pressure
which informs the system that it is currently raining. The
system uses local weather data from the BME680 and
compares it with scraped weather data from the web to help
improve the system’s decisions for scheduling stations on
rainy days.

Fig. 6. Moisture sensor being tested in an outside environment.

D. I2C Moisture Soil Sensor

We used a water-proofed Whitebox Labs capacitive 3-in-
1 I2C sensor capable of measuring temperature, light, and
moisture [6]. One thing to note is that for the waterproofed
version, the light sensor is covered by an adhesive-lined
heat shrink and doesn’t produce usable data. One moisture
sensor will represent an individual zone; see Fig. 1 for an
example setup. Both moisture and temperature data will be
sent to the system’s Raspberry Pi controller via the MQTT
protocol. Fig. 6 shows the setup we used for gathering our
soil composition (our ideal moisture range for grass). It was
placed outside for approximately a month while performing
tests such as not watering for 3-4 days and digging up the
dirt to see how dry/moist it was. Based on our tests and
gathering of data we determined–using online resources–our
ideal moisture range to be 400-450, where a value of 300 is
extremely dry and 400-450 is wet/damp, with the maximum
being 800. Based on this moisture reading our controller
will either add/reduce watering time or remove zones from
running.

E. Flow Sensor

The flow sensor used in Project TURF is a commercial
Digitgen 3/4 inch water flow Hall sensor. The sensor contains
a plate with a magnet connected on one side, which rotates
when water or air passes across it. When the plate makes a
full rotation, the magnet causes a pulse to be sent from the
sensor. To determine the volume of water that flowed through
the system, Project TURF performs a calculation using three
metrics: the counted pulses, the diameter of the sensor, and
the amount of time passed. The purpose of the flow sensor is
to gauge the accuracy of the amount of water flowing though
the TURF system.

F. Pressure Sensor

The main purpose of the FTVOGUE stainless steel pres-
sure transducer sensor is to help monitor the water pressure
of the TURF system. Municipal water pressure measures
somewhere between 35 to 100 psi (pounds per square inch)
and an average sprinkler system requires about 35 psi to
operate correctly. The pressure sensor that Project TURF is
using is capable of measuring up to 100 psi and outputs
a linear analog signal corresponding to the measured pres-
sure values with 5V being 100psi and 0.5V being 0psi. A
Raspberry Pi cannot receive analog signals, so the pressure
signal has to be converted to an 8-bit digital signal using a
PCF8591 analog to digital converter chip that output an I2C
signal. The pressure sensor is located between the municipal
water supply and the irrigation valves so that the sensor can
monitor the entire system’s pressure.

There are two purposes of the pressure sensor in Project
TURF. One is to ensure that the pressure of the TURF system
maintains a nominal pressure rating during operation. The
second purpose is to monitor the system for leaks or breaks.
If a leak or break occurs within the system, the pressure
reading will be in the range of 0 to 5 psi. The controller stores
the data collected by the pressure sensor in the database.

Fig. 7. Raspberry Pi controller connected to relay board.

G. Relay Board and Power

The SainsSmart 4-channel relay board enables the TURF
system to turn the sprinkler valves on/off. It is connected to

Fig. 8. Wiring Diagram of Sprinkler Controller

the Raspberry Pi using four GPIO pins (Fig. 7). Specifically
the pins used by the relays are GPIO pins 27, 22, 23, and 24
as seen in Fig. 8. The pins are in an active low state, meaning
the relays will activate if the GPIO signal is low. The relays
themselves are connected to a 24V AC power supply on one
side, and on the other are connected to the sprinkler valves
they will activate.

The wiring of the rest of the TURF system can be seen
in Fig. 8. The relay module, AC/DC converter, and the bi-
directional level shifter are all driven by the Raspberry Pi.
The flow and pressure sensors are driven by a separate power
supply due to the current limitations of the Raspberry Pi
[7]. All four modules are connected to the Raspberry Pi
to their specific input and output GPIO pins. The ESP32
microprocessor is also shown connected to the BME680 or
the I2C Moisture sensor which have identical connections.

Fig. 9. Demo of sprinkler heads.

H. Sprinkler System

The custom Project TURF sprinkler system that was made
for the demonstration (Fig. 9 was built using 3/4 inch
PVC pipes and the Orbit 3-valve heavy duty preassembled
manifold. The connections were sealed using PVC primer
and PVC cement, or Teflon tape (for threaded connections) to
ensure a watertight and airtight seal. The sprinkler heads used

in the demo were the Orbit brass nozzle pop-up sprinkler
head and the Orbit 2 inch pop-up sprinkler head. The
valve manifold is connected to pipe containing the flow and
pressure sensors which is then connected to either a spigot
for tests with water, or an air compressor for testing with air.
From the middle valve, near the end of the run of pipe there
is a manual turn valve. This valve, when opened, enables
the system to simulate a leak. The system shown in Fig. 9
is also waterproof.

Fig. 10. Demo of 3 zones with moisture soil sensor.

III. SOFTWARE

A. MicroPython Programming Language

MicroPython is flashed to all ESP32 modules on Project
TURF. MicroPython is a lightweight subset of Python, as
it contains only a portion of the libraries and packages that
Python normally does. As a result, it is much smaller flash
size and is ideal for microcontrollers. It only needs 256KB
of memory and 16KB of RAM to execute [8].

MicroPython can be accessed on any ESP32 through
remote shell (rshell) [9]. This package allows access to the
embedded device’s Read–eval–print loop (REPL). It also
allows access to the file system on the device, as well as
read/write access to these files. On the ESP32, the boot.py
file and main.py file are executed on boot up in that order.
This is how Project TURF was created and debugged.

B. InfluxDB Database

This controller uses InfluxDB, an open-source time series
database, to log all the sensor data that we collect for Project
TURF [10]. In time series databases data is paired to the
time it was entered into the database allowing for easy
visualization and access of data using various open source
tools. Watering a lawn relies heavily on time, so logging data
via this type of database allows for easy analysis of trends
based on similar times of day or yearly cycles.

C. Message Queuing Telemetry Transport (MQTT) Protocol

The TURF system employs the MQTT protocol to com-
municate. This is a wireless communication protocol that is

based upon a Topic/Publish protocol developed in 1999 [11].
There is a broker that is installed on the Raspberry Pi and
will be hosted and always available on this Pi. The broker
selected for Project TURF is an open-source broker called
Mosquitto [12].

All Publish/Subscribe messages route through this broker.
The ESP32 microcontrollers in this system will publish their
data, which has already been formatted, to a certain topic.
The Pi that is hosting the broker will also be running another
server that is subscribing to these topics that are being
published by the ESP32s. This server then takes this data
and adds it to the database.

D. SIP

Sustainable Irrigation Platform (SIP), is the software inter-
face on which Project TURF is built [1]. It is an open-source
irrigation control software that is written in Python and
JavaScript and runs under the Linux OS. This open-source
project allows for contribution via plugins. Project TURF
will be built by adding custom plugins and manipulating the
main source code in a way to allow for database access,
creating new schedules, and allowing a user to view data in
an easy and informative manner. We chose SIP because we
wanted to move away from the traditional sprinkler control
boards which are hard to use and offer little to no feedback
about a system’s watering habits. This allows a user to access
the interface from a desktop or phone anywhere in their
home. The homepage can be seen in Fig. 11.

Fig. 11. SIP Home Page

1) Data Display Plugin: The data display plugin provides
an interface to view local weather, BME680 station reading,
and moisture/temperature for each zone setup. The weather
is scraped locally from Google and provides five days worth
of information (Fig. 12). As for the moisture, a user can view
up to 5000 of the most recent readings for each zone. The
table is built using a JavaScript function called DataTables
which allows a user to filter and search data. By selecting the
zone in the drop down, the table is updated using JavaScript
and a post method. New data can be accessed every hour. A
refresh of the page is needed to see the weather and BME680
reading, but the table for each zone will update for every zone
change.

Fig. 12. SIP Data Display Page

2) Controller Plugin: The controller plugin is where all
of the times and adjustments for sprinkler programs are
calculated. The controller page requires the user to input data
for each zone to create a baseline watering time duration.
The data required to calculate a baseline per zone is area
(ft2), inches per week of water, the sprinkler head type with
corresponding gallons per minute (GPM), and the number
of sprinkler heads as seen in Fig. 13. Each day the plugin
calculates a precipitation rate (PR) for every zone which can
then be used to calculate a base time duration. To find the
precipitation rate we used this equation [13]:

PR(in/hr) =
96.25 ∗GPM

Area(ft2)

To calculate the baseline time duration for each zone
divide the amount of inches per week of water by the
precipitation rate. The time is then divided by 3, the number
of times that will be watered per week.

Time(min/day) =
water(in) ∗ 60

PR ∗ 3(days/wk)
In Utah you can obtain the amount of water per week

you should give a lawn by going to the Division of Water
Resources website: https://conservewater.utah.
gov/guide.html

Once the baseline time duration is calculated the controller
then needs to adjust the time amount by the soil moisture
levels in each zone. The controller queries the database for
the soil moisture levels in each zone and checks if they
are in the target range. As stated previously the target soil
moisture level is 400-450. If the moisture level is above 450,
it removes a minute of time per 25 points above the target
value. Similarly if the moisture level is below 400, it adds
a minute of time per 25 points below the target value. The
resulting time is what will be used for that day’s watering
program.

The controller plugin also runs the code to capture both
the flow and pressure sensor data. SIP uses a Python library

called blinker; specifically SIP uses blinker to signal when
a sprinkler program will be run. The controller plugin uses
this blinker signal to capture the amount of time the water is
flowing through the system. It takes the pulse count from the
flow sensor over that time frame and stores the gallons per
minute (GPM) of the specific run. The controller also records
and stores the water pressure value after a few seconds have
passed to get an accurate reading while the system is running.

Fig. 13. SIP Controller Page

3) Relay Plugin: The relay plugin enables the SIP to
control the sprinkler valves within the TURF system. By
using the same blinker signal that the controller plugin uses,
the relay plugin enables and disables separate signals to the
relay board using the Raspberry Pi’s GPIO pins. The pins
may be set by the user, Fig. 14, but we recommend leaving
them set at the default values due to the Pi’s launch behavior.
Not using the default values may result in multiple relays
turning on simultaneously due to the default behavior of the
Raspbian OS.

Fig. 14. SIP Relay Page

IV. COST

The cost of this project is straightforward when dealing
with the required components, but more variable when deal-
ing with setup and overall design/protection of the system.
The system currently uses a homemade protection case for
the Raspberry Pi that would be difficult to predict production
cost. The ESP32s are connected by wires to the sensors in
use. For distribution/production, they could all be placed on a
PCB which would increase cost by approximately ten dollars.
There is also a variable cost corresponding to the number of
zones in a yard. The base estimate/cost as of this report is 45

https://conservewater.utah.gov/guide.html
https://conservewater.utah.gov/guide.html

dollars per zone. Some of the variable costs when calculating
a cost for this project are listed in Table I.

TABLE I
LIST OF ITEMS WITH VENDOR LINKS AND COST

Component Vendor Cost #
BME680 Adafruit $19.00 1

Raspberry Pi 3 B+ Adafruit $65.00 1
ESP32 Espressif $15.00 # of Zones

Relay Board Sain Smart $9.00 1
I2C Moisture Soil Sensor WhiteBoxLabs $29.00 # of Zones

Pressure Sensor Amazon $25.00 1
Flow Sensor Amazon $12.00 1

As seen from Table I, the material cost for the main
components of the TURF system would cost approximately
130 dollars. This does not include production, software,
taxes, or shipping. Project TURF is slightly more expensive
when dealing with available commercial controllers, but most
commercial controllers do not come with the sensors as
this project does. These sensors allow for data collection
and manipulation to provide an accurate watering system
customized for the user’s yard. Specifically, it is designed to
provide an accurate schedule for each of the user’s zones in
the system. A user no longer needs to worry about the stress
of over or under watering.

V. DIFFICULTIES

There were a few difficulties that arose with the devel-
opment of this project. This included the hardware and the
software as well as the ability to effectively test. The trouble
with the hardware included the power required to connect
and operate the flow and pressure sensors to the Raspberry
Pi over long wiring distances. The software problems that
occurred were related to the algorithm development for the
controller and the version of MicroPython that was flashed
to the ESP32. The details of these difficulties are described
in detail in the sections below.

A. Power

The maximum recommended current draw for a single
Raspberry Pi output pin is 16mA and an aggregate current
of 50mA for a bank of pins [7]. The amount of current
required to run the relay board, flow sensor, pressure sensor,
AC/DC converter, and the bi-directional level shifter could
exceed the 50mA maximum of the Raspberry Pi. To solve
the current draw issue and potential long wiring distance, we
added another separate power supply to drive the flow and
pressure sensors. The power supply we used was an old Dell
laptop power supply that output 19.5V DC which was then
down-converted to 5V using a AC/DC TO DC Buck Power
Converter. Project TURF had no issues with adding the new
power supply and the sensors operated as expected.

B. Testing

In order to effectively test and verify the correctness of our
interface we needed to be able to setup our finished project
in a real yard. We were only able to test outside once, as
seen in Fig. 15, mostly due to inclement weather conditions.

So many unknown factors come into consideration when
our Controller is making a decision to add/reduce time or
stop scheduled watering times all together. Due to these
constraints we were unable to dynamically test our con-
troller’s ability to accurately adjust/predict the best amount
of watering time for each zone. With any good interface, it
is never complete and can always be improved; but the best
way of accomplishing such is by testing over a longer time
period.

Fig. 15. Custom made Sprinkler Array

C. Algorithm

The original plan for Project TURF was to utilize a ma-
chine learning algorithm. This algorithm would have taken in
all of our sensor data and reported an output value indicating
how long to water a particular zone. This algorithm was a
supervised, linear regression machine learning model. This
means that the model had to have initial data with correct
output values to work. Since we did not have adequate initial
testing data, the model could not be completed without giving
false training data to the model.

The machine learning model was still created using emu-
lated data and resides in the project’s repository. The machine
learning algorithm can be used if the user collects data for
a season or two and has a correct schedule for that time
frame. Once the data is gathered, the user can use that as
training data for the model. The model will then be able to
take all future data from the sensors and generate a watering
time for that zone to which the data is associated. For now,
the controller takes in only a portion of the sensor data and
generates a schedule based on that value.

D. MicroPython

Micropython is an open-source implementation of Python
3 [8] that includes most of the standard libraries and is opti-
mized to run on micro-controllers. Thus, all of the supporting
libraries for sensors that are written in Micropython will not
operate on newer versions of Micropython, unless the owners
update their repositories with appropriate changes. This was
a good learning experience, because we spent a couple weeks

https://www.adafruit.com/product/3660
https://www.adafruit.com/product/3055##technical-details
https://www.adafruit.com/product/3269
https://www.sainsmart.com/products/4-channel-5v-relay-module
https://www.whiteboxes.ch/shop/i2c-soil-moisture-sensor/
https://www.amazon.com/gp/product/B07N8S72M6/
https://www.amazon.com/gp/product/B00VKAT9VA/

trying to figure out bugs; we even tried switching to Arduino
IDE. In the end, all we had to do was use an older version
of Micropython that supported the sensors library design.

VI. FUTURE

A. Machine Learning

Machine learning is not currently implemented in Project
TURF, due to the insufficient initial data. One possible
solution to using machine learning would be to create a
supervised linear regression model. This would be a multiple
regression model, as we have multiple inputs to one output
[14].

Since all of the sensor data is stored in the database, we
have training data for our model. A user would collect data
for a season or two and gather enough data to create a model.
This is also dependent on how well the output fit. This means
that the amount of time each zone was watered should be
fairly accurate, or how the user wants it to be. This will give
the data the correct output for each input to create a valid
model.

Once the training data is used to create the model, all
future data can be put into this model to get an output of
how long to water the zone. This would be the new way in
creating the schedule for each zone. All a user needs is some
training data, and a linear regression model can be created.

B. Custom PCB and Casings

This project could be made for professional production
with a PCB and with a custom case for the controller and the
ESPs. The ESP32 could be placed on a PCB and the sensors
could connect to the PCB instead of directly to the ESP32.
This would give the system a cleaner, more professional look.

A case could be made for the ESP32 and the Raspberry
Pi. Standard sprinkler controller casings can be found on
Amazon for around $30.00 and would fit the sizing of a
Raspberry Pi well [15]. On the other hand, the ESP32 would
require a custom casing. In this project, plastic food storage
container is used with with holes cut into it using gaskets to
cover the holes to seal it. These could be more developed
with more research.

C. Mesh Network

A mesh network would be very useful in the case of a
sprinkler controller. This would allow nearly infinite zones
with nearly infinite distance to the controller. This is possible
in a mesh network, because all the nodes in the network
could talk to each other. When one zone gets the data, it
would then send it to the next closest node, which would
then pass it to the next closest node until it reaches the server
or database that stores all the data.

Python has libraries for Bluetooth Low Energy mesh
networks and WiFi mesh networks from PyPI [16]. These
are relatively new libraries and are made for IOT devices.
This would be on the scale of newer territory for the ESP32s
and any implementation would be extremely valuable.

D. Battery Powered

Each ESP32 in this project can either be powered by
battery or by wire. There are pros and cons to each choice,
and there seems to be no right solution for this controller.
Hard wiring each zone would mean that there would be
no maintenance when dealing with the power supply of the
ESP32. The problem in this case is that a power source would
need to be developed for each zone.

A Battery-powered microcontroller is more dynamic and
allows the user to place the zone anywhere or place in any
pre-existing setup. If a sprinkler system is already setup, then
the user only needs to place the battery-powered ESP32 with
the existing valve box. The issue with the battery-power is
that regular maintenance is required (batteries are required to
be changed). One fix to this would be some self-maintaining
source, such as a solar panel.

VII. CONCLUSION

There are many people with brown, dead yards. Their
grass does not get enough water, or it gets too much.
Sprinklers get left running and water is wasted. Project
TURF updates sprinkler control to modern state of the art
technology. Project TURF automates and predicts the best
time of day to water your yard, as well as determine and
predict the length of time your yard should be watered. It
displays to the UI the schedule that has been determined and
lets the user decide if these recommendations seem valid.
This system assists the user, without taking the control away
from the user.

Project TURF will provide users a way to save money
on water, as well as do less work in managing their yard.
Real-time feedback is implemented, so no waiting on data
is necessary. Data will always be available to the user on
the UI. The difference between the Project TURF controller
and other smart sprinkler controllers is that Project TURF
provides schedules to the user that are based on data coming
from the user’s yard, which the user can implement as they
see necessary.

At the end of the day, Project TURF should make lawn
care easier. It is straightforward and easy to maintain. The
sensors send data to the ESP32, and the ESP32 transfers
data to the Raspberry Pi for processing. After data has been
processed, a schedule is sent to the UI that the user can
choose to accept or deny. The lawn will be more green and
healthy by the end of the experience. Lawn care should be
made easy.

REFERENCES

[1] Dan-in-CA. (2020) Sustainable Irrigation Platform. [Online].
Available: https://dan-in-ca.github.io/SIP/

[2] Ray Wang, Samer Albahra. (2020) Open Sprinkler. [Online].
Available: https://opensprinkler.com/

[3] ESPRESSIF SYSTEMS. (2019) ESP32 Overview | Espressif Systems.
[Online]. Available: https://www.espressif.com/en/products/hardware/
esp32/overview

[4] Raspberry Pi Foundation. (2020) Buy a Raspberry Pi 1 Model
B+ – Raspberry Pi. [Online]. Available: https://www.raspberrypi.org/
products/raspberry-pi-1-model-b-plus/

https://dan-in-ca.github.io/SIP/
https://opensprinkler.com/
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.raspberrypi.org/products/raspberry-pi-1-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-1-model-b-plus/

[5] randomnerdtutorials. (2020) MicroPython: BME680 with
ESP32/ESP8266. [Online]. Available: https://randomnerdtutorials.
com/micropython-bme680-esp32-esp8266/

[6] Catnip I2c Soil Moisture. (2020) I2C Soil moisture sensor by Catnip
electronics on Tindie. [Online]. Available: https://www.tindie.com/
products/miceuz/i2c-soil-moisture-sensor/

[7] RaspberryPi. (2020) GPIO - Raspberry Pi Documentation.
[Online]. Available: https://www.raspberrypi.org/documentation/
hardware/raspberrypi/gpio/README.md

[8] MicroPython. (2020) Micropython. [Online]. Available: https://
micropython.org/download/#esp32

[9] PyPI. (2020) rshell. [Online]. Available: https://pypi.org/project/rshell/
[10] InfluxData. (2020) InfluxDB Open Source Time Series Database |

InfluxDB | InfluxData. [Online]. Available: https://www.influxdata.
com/products/influxdb-overview/

[11] MQTT. (2020) MQTT. [Online]. Available: https://mqtt.org/
[12] Mosquitto. (2020) Eclipse Mosquitto: An open source MQTT broker.

[Online]. Available: https://mosquitto.org/
[13] W. S. University. (2020) Sprinkler Application Rate.

[Online]. Available: http://irrigation.wsu.edu/Content/Calculators/
Sprinkler/Sprinkler-Application-Rate.php

[14] R. Python. (2020) Linear Regression in Python. [Online]. Available:
https://realpython.com/linear-regression-in-python/

[15] Amazon. (2020) Amazon sprinkler cas-
ing. [Online]. Available: https://www.amazon.com/
Orbit-57095-Weather-Resistant-Outdoor-Mounted-Controller/dp/
B000VYGMF2/

[16] PyPI. (2020) BLE Mesh. [Online]. Available: https://pypi.org/project/
bluetooth-mesh/

https://randomnerdtutorials.com/micropython-bme680-esp32-esp8266/
https://randomnerdtutorials.com/micropython-bme680-esp32-esp8266/
https://www.tindie.com/products/miceuz/i2c-soil-moisture-sensor/
https://www.tindie.com/products/miceuz/i2c-soil-moisture-sensor/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md
https://micropython.org/download/#esp32
https://micropython.org/download/#esp32
https://pypi.org/project/rshell/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://mqtt.org/
https://mosquitto.org/
http://irrigation.wsu.edu/Content/Calculators/Sprinkler/Sprinkler-Application-Rate.php
http://irrigation.wsu.edu/Content/Calculators/Sprinkler/Sprinkler-Application-Rate.php
https://realpython.com/linear-regression-in-python/
https://www.amazon.com/Orbit-57095-Weather-Resistant-Outdoor-Mounted-Controller/dp/B000VYGMF2/
https://www.amazon.com/Orbit-57095-Weather-Resistant-Outdoor-Mounted-Controller/dp/B000VYGMF2/
https://www.amazon.com/Orbit-57095-Weather-Resistant-Outdoor-Mounted-Controller/dp/B000VYGMF2/
https://pypi.org/project/bluetooth-mesh/
https://pypi.org/project/bluetooth-mesh/

	Introduction
	Motivation
	Background
	Related Work
	Project Demonstration

	Hardware
	ESP32 Microcontroller
	Raspberry Pi Model 3 B+
	BME680 Sensor
	I2C Moisture Soil Sensor
	Flow Sensor
	Pressure Sensor
	Relay Board and Power
	Sprinkler System

	Software
	MicroPython Programming Language
	InfluxDB Database
	Message Queuing Telemetry Transport (MQTT) Protocol
	SIP
	Data Display Plugin
	Controller Plugin
	Relay Plugin

	Cost
	Difficulties
	Power
	Testing
	Algorithm
	MicroPython

	Future
	Machine Learning
	Custom PCB and Casings
	Mesh Network
	Battery Powered

	Conclusion
	References

