Autonomous Robotic Chess Board

Alec Adair, Kenneth Bonar, Kara Douville, Austin Payne, Department of Electrical and Computer Engineering,
College of Engineering, University of Utah

Abstract—Chess can either be played either on a physical
board or on a computer. However, few attempts have been made
at melding the traditional feel of physical chess and the software
functionality offered by virtual chess. Our senior project provided
users and their opponents with the flexibility to pick their
own environment. This was accomplished by building a robotic
chess board where pieces were moved using an electromagnet
and magnetic chess pieces. Users were then able to interact
with the chess robot by moving their own pieces and compete
against an artificial intelligence, where the opposing pieces moved
autonomously.

Index Terms—chess, microcontroller, electromagnet, stepper
motor, hall effect, robotics, WiFi.

I. INTRODUCTION
A. Background

Chess is a two player strategy game that dates back to the
6th century with origins in India and Spain [1]. Centuries later,
Claude Shannon wrote the first important paper concerning
methods for programming chess-play in 1949 [2]. Other great
thinkers, such as Alan Turing, have also published papers on
chess playing algorithms. He implemented one of the first
chess-playing algorithms, dubbed Turochamp, to demonstrate
the capabilities of contemporary computers [3].

Since 1949 chess algorithms have continued to evolve, even
to the point of beating chess Grandmasters [4]. One such chess
engine is Stockfish, an open source project that is consistently
ranked as “the strongest open source chess engine in the
world” [4], [5]. With the ubiquity of chess engines and the
Internet, people can now play chess on a range of devices and
compete against opponents from all over the world.

For our senior project we built an Internet-connected, au-
tonomous robotic chess board that allowed an individual to
play chess either virtually or physically against another player
located anywhere in the world. Additionally, we used the
Stockfish chess engine to allow players to hone their skills
against an artificial intelligence (AI).

Being fans of fantasy, inspiration for the functionality of
the board was taken from the “Harry Potter” series. On our
board, the opponenet’s pieces moved autonomously, similar
to “Wizard’s Chess” from the popular novel Harry Potter and
the Sorcerer’s Stone [6]. Our board maintained the tactile feel
of chess, while adding an element of surprise and smooth
automation.

After deciding on our project at the beginning of the
year, we subsequently researched other solutions and products.
Currently, another board is being created and crowd sourced,
called Square Off [7]. While Square Off is similar to our
implementation, it lacks certain elements that we felt were
important, such as a generic interface for connecting a variety

of chess clients together. We were able to implement all
of these features and set our chess board apart from those
currently in production.

B. Motivation

The motivation for our team to do a game-based project
was twofold: to showcase our skills in both computer and
electrical systems and to provide an entertaining, rewarding,
and polished product for demonstration. The final chess robot
incorporated several electrical systems focused on moving
and coordinating pieces. The software skills that we have
developed played an integral role in the implementation of the
various interfaces that were developed for game play. Several
other examples of chess machines have been built, but few
incorporated the software sophistication and cross-platform
development that we achieved. In the end, the board enabled
users to play chess against other players or an artificial player,
yet maintained a traditional kinetic experience.

C. Design Approach

At a high level, we built 1) an HTTP chess server with
artificial intelligence capabilities and 2) an Internet connected
chess robot that could connect to the chess server. The chess
server was designed to be device agnostic so that a variety of
clients could connect and play, including our chess robot. It
utilized an open source chess engine called Stockfish to pro-
vide artificial intelligence that players could compete against.
The chess server was also able to manage multiple games
and enforce all the rules of chess so that resource constrained
clients, such as our chess robot, could play even with limited
computing power.

The chess robot was constructed using a stepper motor
driven, two axis machine underneath a chess board. The pieces
of the chess board were embedded with magnets so that the
machine could move the pieces using an electromagnet. In
addition, the chess board contained a magnetics sensor in the
center of each square; this allowed a user to physically move
their pieces and have the board determine which move was
made. The chess robot also connected to a standard WiFi
network so that the board could connect to the chess server
and start new chess games, relay player moves, and receive
opponent moves and update the positions of the chess pieces.

We used an Agile project development approach to design
the chess robot. We had an initial design and a relatively
good idea of how to achieve it, but throughout the process
we iteratively tested hardware and software modules. We
constructed and verified the hardware components of the
robot first, then subsequently added and validated the various
software modules. Finally, we implemented the chess server

and completed end-to-end integration testing by playing games
on the chess board. Our approach also incorporated risk
assessment and management, tasks with the highest difficulty
were given the highest priority (see Section V-B). We also
implemented integration testing at every phase of the project
to ensure that each component worked together.

D. Demonstration Expectations

At the final project demonstration, the user was be able to
play either single player or multi-player chess, in four different
game modes:

« No player: A.L. on board vs A.L. on board

e One player: user at board vs A.L

e One player: user on web vs AL

o Two players: user on web vs user on web
We chose to demonstrate user at board vs Al and Al vs Al, as
these two games modes were most conducive to demonstrating
the chess robot.

II. PROJECT TASKS
A. Hall Sensor Array

Initially, we planned on using an array of reed switches
to keep track of chess piece movement on the board, with
one reed switch position at the center of each board square.
However, we ultimately chose to use an array of hall sensors.
Hall sensors are able to detect DC magnetic fields and output
an analog voltage in proportional to the field applied to
the sensor and provided better biasing and magnetic field
measurement.

Each index in the array correlated to a square on the chess
board. Because chess is deterministic, it was sufficient to
know the initial state of the game and track piece movement
throughout the duration of the game. Each chess piece was
embedded with a magnet and the hall sensors raised or lowered
the output voltage based on the proximity of a piece, thereby
signaling when a piece had moved.

This part of the project was completed by Alec, who
designed the entire analog system as well as the 64 to 1
multiplexer needed to take readings from the hall sensors. This
task was comprised of subtasks:

o Implement firmware polling of the array

o Determine optimal magnet strength

o Create 3x3 proof of polling concept (6 General Purpose
Input/Output (GPIO) pins)

o Design analog system

o Design and construct a 64 to 1 multiplexer system

« Establish hall sensor threshold

o Test hall sensors and multiplexer design

o Determine piece movement based on board states

NEMA-17 brati Hall
Calibration
Stepper Switches Sensor
Motors Array
A A
GPIO GPIO
v Y
o WiFi
Motor GPIO Application | AR serial Module
Drivers (= > Y < > (Particle
(DRV8825) (STM32F0) Photon)
A A
GPIO UART Serial
Y
Touch Screen
Egc'n'gt (Android Smart
g Phone)

Fig. 1. High Level Block Diagram

B. Mechanics

Computer numerical control (CNC) is the automation of
machine tools by means of computers executing prepro-
grammed sequences [8]. The chessboard housed a two-axis
CNC machine that moved an electromagnet beneath the chess
board. Each chess piece contained a small neodymium magnet
such that the force between the piece and the electromagnet
was enough to move the chess piece, but small enough so
as not to alter the other pieces’ positions. The electromagnet
interfaced with a central microcontroller via GPIO. The CNC
machine was driven by stepper motors that interfaced with
DRV8825 motor drivers, as seen in Fig. 1, and controlled the
movement of the electromagnet. Printing all of the parts took
approximately 30 hours and was completed by Ken and Kara.
The assembly of the CNC took 10 hours and was completed by
the group. Austin implemented the software driver to control
the electromagnetic switch and stepper motors. This task was
comprised of the following subtasks:

« Print 3D-printed parts

¢ Order steel tubing and electronics

« Assemble CNC, seen in Fig. 2, from V1 Engineering [9]

o Cut acrylic board

o Design electromagnetic holder

o Implement electromagnetic switch

« Print chess pieces

« Wire motors and electromagnet

Fig. 2. Diagram of CNC machine used to move chess pieces [10]

C. Robotic Stepper Motor Interface

Having a precise stepper motor driver and interface was
key to making sure the chess pieces moved to accurately
and didn’t interfere with other pieces in transit. In order to
simplify path planning and avoid collisions, the base of the
chess pieces were designed to be half the width of a chess
square. When a piece was moved, it was offset onto the lines
dividing squares and moved taxi-cab style to its destination.
The motor driver interfaced with the microcontroller as seen in
Fig. 1. The stepper motor firmware drivers were able to move
with millimeter accuracy, accumulating less than 1% error
after 50 linear movements. In addition, the stepper firmware
compensated for minor errors in the chess board construction,
such as off center hall sensors and unequal square width.
Austin designed and implemented the stepper motor firmware
drivers as well as wired the stepper motor drivers with help
from Alec and Ken. This projects subtasks included:

o Write robust and accurate motor drivers

— Implement Pulse Width Modulation (PWM) control
— Account for error in millimeter to step conversion
— Calibration routine to initialize state of CNC

o Wire DRV8825 to steppers and microcontroller

board init, validate
piece placement, init
wifi module, etc.

game play setup

(choose players,
setup remote

connection, etc.)

start game
turn = WHITE

"hardware move"

| wait for game board
es K
I‘zzﬁ YeS LI change (interrupts le——

; undo change
| from sensor array)

"software move"

wait for software
change
from wifi module)

update software
(capture pieces,

undo change Lo
1| |check, promote, etc.)

update game board | |
(capture pieces,
check, promote, etc.) |

turn = next player

Fig. 3. High Level Algorithmic State Machine (ASM)

D. Interface Integration

In an effort to avoid one mass integration, integrated the
different interfaces incrementally. Our project relied on the
successful integration between each major task. The interface
between different elements can be seen in Fig. 1. This task
consists of several subtasks:

o Design WiFi module to application controller UART
interface
¢ Design motor control to MCU strategy

E. Network and Server Architecture

Our network architecture consisted of a simple server-client
architecture built on top of the HTTP protocol. Using HTTP
facilitated a device agnostic architecture and permitted the
rapid development of both the embedded firmware client and
a web client. Game state was maintained in the server using
an open source JavaScript library called chess.js. In addition,
we used a strong, open source chess engine called Stockfish to
add artificial intelligence to the chess server. The chess game
logic was then exposed as a Representational State Transfer
(REST) API using the standard HTTP verbs GET and POST.
GET was used to fetch games, player moves, and ask the
server to compute the best move using Stockfish. POST was
used create new games and move pieces on the board.

Austin designed and implemented the chess server as well
as the HTTP client on the chess robots WiFi module. Kara
implemented the web client for virtual chess games. The
networking portion of the project included the subtasks listed
below.

o Design the network protocol

o Implement HTTP server and client logic on WiFi Module

e Design WiFi to application controller UART driver

o Implement HTTP web application

=

User

&
>
[

POST game

'
' 1
N 1
1, {game_id: gid, player_id: pid} !
b GET
New game — ' ! 200 OK
! ' {game. id: gid)
H ! POST game/gid/join
: 1 200 OK
'
' ‘
']
' 1
— ! GET game/gid/player/pid/turn]
—SE genotipiayopitun_y,
’ 200 OK 1
N {turn: true}
—
Update board — ' GET game/gid/last-move
— e >
i 200 OK
{move: b1c3}
—

POST game/gid/player/move
move: e2e:

};

200 OK

Move piece —|

|

GET gamelgidigame-over
200 OK
{game_over: true}

Game over

GET game/gidresult
200 OK
{result: 1-0}

H

«-JX L.y LYo L_N1

|

e A FR A -

<--

Fig. 4. Example Network Interactions

F. Web Application

The web application is our graphic user interface for the
server. This web application allowed a user to create a new
game, join a pending game, play against the Al, or observe a
game in progress. The game being played was abstracted from
the board so a user could play against a user on the board or
against another player on teh web applciation.

The server that kept track of the game doubled as our web
server - it simultaneously served HTML while updating current
chess games. This allowed us certain development efficiencies,
as we didn’t have to communicate from game-server to web-
server. The web-page shows valid moves to the user as well
as a countdown clock. When the clock expires, the client
communicates the loss to the server, and displays the winner.
We used a thorough open-source chess project to render the
board and pieces.

Finally, the application was successfully deployed via
Heroku, a cloud application platform. The application is
registred under the domain name “www.theturk.us,” named
after the fake chess-playing machine constructed in the late
18th century.

G. Stretch Goals

At the beginning of the summer, we had several stretch goals
we had hoped to accomplish. By demonstration day, we were
able to implement several of the additional features. Instead
of an small LCD screen with interactive buttons, we wanted
to have a capacitive touch screen interface. We accomplished
this by building an Android application that interacted with
the board via serial communication with the WiFi module.

III. SPECIFIC TASK INTERFACE
A. Hardware-Software Interface

The application controller acted as a central controller
of the robotic chess board. It acted on specific hardware
interrupts, made decisions, and controlled external hardware.
The following interfaces handled hardware communications:

o WiFi: UART

o Sensor Array: 16 General Purpose Input/Output (GPIO)

Array

e Motor Driver: 4 GPIO per axis

o Electromagnet: Power MOSFET and 1 GPIO

Both the Android user interface and the WiFi module
communicated with via UART. We designed an ASCII based
serial protocol consisting of a command number following by
comma separated parameters in order to trigger certain actions
on the disparate controllers. For instance, when a user started
a new game on the Android phone, this triggered a serial
command directed to the WiFi module that created a new
game on the chess server and started the chess robot calibration
sequence.

The sensor array acted as input to the controller to indicate
if each chess square is occupied. To avoid using large amounts
of GPIO pins, we used a sensor array with complex hardware
multiplexing. This effectively reduced the number of GPIO
pins from 64 to 1.

B. User Interface

A screen-based interface, using an Android phone, was
incorporated so that the user could directly interact with the
game. The touchscreen was used to start the game, end a play-
ers turn after a piece was moved, and perform more complex
actions such as capturing opponent pieces and castling. This
touchscreen utilized our serial communication protocol to send
and receive serial commands via the USB port on an Android
phone. A basic USB-TTL adapter was used, as well as a USB
serial library from the Android API. This allowed the user to
press buttons on the screen that triggered serial output to the
WiFi module.

IV. TESTING AND INTEGRATION STRATEGY

Our testing for each section involved validation and testing
of each major step as it was completed. We first validated
the hardware, mainly the driver and motor function as most
of our risk lay in this task. Next, we tested the sensor array
and movement hardware. The integration of the different
communication protocols provided a significant challenge.
Final validation and testing of the game consisted of playing
through the different game scenarios and debugging each one.

V. GROUP MANAGEMENT
A. Team Roles

Our team made an effort to share all responsibilities. Each
team member was in charge of owning a main component of
the project and being the primary motivator for ensuring their
component was completed on time.

o Alec - Hally array, magnetics, and analog hardware

o Austin - Embedded firmware, networking, and software

architecture

o Ken - Axis hardware and Android user interface

o Kara - Web client

B. Communication Plan

Our team established a set of weekly meetings to ensure
the proper amount of time was allocated to the project. Every
Tuesday and Thursday afternoon was reserved for working
on the chess board. Our meetings were structured loosely
as a scrum, an Agile framework for completing complex
projects [11]. During these meetings, each team member
described what they accomplished over the past week and then
detailed what they hoped to execute in the upcoming week.

Outside of our weekly meetings, we used Basecamp, a web-
based project management tool, to facilitate virtual group com-
munication. We created distinct message boards that allowed
us to share specific information with those who needed it, as
well as archive information needed at a later date.

VI. RISK ASSESSMENT
A. Motor Control
« Risk: high
o Possible issues: trouble with calibrating motor position,
mathematics to determine motor position relative to board
position, troubleshooting motor drivers

o Mitigation: Use open-source stepper motor driver from
RepRap [12]

o Target Date: Verify that motor drivers are functioning
with precision and calibrated by May 31st

B. Reed Switch Array

o Risk: medium

« Possible issues: can’t get array working, tolerances is too
tight

« Mitigation: use RFID tags or Hall sensors

o Target Date: Verify that all readouts are accurate on 8x8
scale by May 31st

C. PFarts Sourcing

o Risk: medium

o Possible issues: 3D printing parts could fail, time to
reprint, parts are not high enough quality to support CNC
frame, motors, and chess board

« Mitigation: purchase parts from a professional company
that prints custom high quality 3D parts

o Target Date: Completed

D. Application Software

o Risk: medium

o Possible issues: chess algorithm is difficult to implement
and application can’t be built in time

o Mitigation: implement Dream Chess, an open-source
chess game [13]

o Target Date: Verify that is is possible to run our own
chess application off of the microcontroller by August
31st

VII. BILL OF MATERIALS
A. BOM

o Particle Photon

e ARM-based Cortex-M7

e Reed Sensors

o Acrylic Board

e CNC 3D Printed Parts [9]

e RAMPS 1.4 Shield

e DRVS8825 Drivers and Heat Sinks
e 12v 5A Power Supply

e GT2 Belt (4M = 24 x 24)

o GT2 16T Pulley

o 608 Bearings (2-RS, Z, 7Z7)

o 3/4 Steel Tubing (23.5mm OD)
« NEMA-17 Stepper Motors

o Resistors - 100 ohm

o Wiring Harness

e Zip Ties

o PLA Filament

o Spindle: Dewalt 660 (600 W)

e 4 x 4 Plywood Sheet

B. Other Resources and Mentors

¢ Jon Davies
o Lassonde Center

C. Vendor List

e« Amazon

o Ebay

« Home Depot
o Speedy Metals
« totalElement
o Particle

VIII. CONCLUSION
A. Final Status

The final project presented on demo day was very much the
product we envisioned. We essentially implemented all of the
features that we had originally planned, as well as our stretch
goal of interfacing an LCD screen for user input. We were
able to achieve our project’s end goal of having a user sit at
the robotic chess board and play against an Al. The project
was ultimately demonstrated by guests interacting with the
machine as well as watching Al vs Al Our definition for
success was a user playing an entire game through one of
the game modes without having to correct the board (such as
picking up a piece that was accidentally knocked over). We
also desired an aesthetically pleasing final project. We feel that
we achieved all of our base goals and delivered a functioning
robust autonomous chess robot prototype.

Regarding the schedule, we were relatively on track through
the Fall semester, mainly assembling and implementing the
necessary modules in our time-frame. While the modules were
implemented in a timely manner, they were possibly not tested
as thoroughly as they could have been.

B. Summary

Over the past year we have learned several important
lessons concerning management and engineering. As far as
management, we learned that it is much easier to plan a
project than to implement one. We assumed that by the end
of the spring and summer we would have had more tasks
completed than we did. We also underestimated the amount
of time it would take to finish each task. This project has been
an excellent lesson in approximating the effort of a task.

In addition, we have found that no matter how well you plan,
unexpected problems occur. Engineering requires flexibility
and creativity. There is sometimes a difference between the
engineering theory that we learn in school and the practical
application of the theory. While some problems we have
encountered have required a brand new solutions, others have
preexisting solutions that we were able to take advantage of,
instead of having to “re-invent the wheel”.

Our milestones had a number of complex dependencies
that were carefully considered before hardware was ordered.
We took the approach of deciding what would be necessary
for a minimum viable product. Next, we scheduled each
task in priority of which would take the largest amount of
time. The sensing array and chess board mechanics are co-
dependent because they govern the physical movement of the
pieces (which is at the core of our project). Additionally, the
stepper motor interface and the mechanics are co-dependent

because moves must be dictated to the motors themselves.
The application software and web-application provide a way
for users to remotely use the board. Finally, we had stretch
goals that we were able to achieve, but the finished product
did not depend on them.

Described in our risk assessment is the level and scheduling
that we used to order tasks we thought would pose the largest
risks. The motor control had the highest potential to adversely
affect our project, and turned low when we verified that the
motors were correctly moving. The Switch Array risk was
mitigated when we had validated each sensor with input, and
attached to the board. Parts Sourcing was completed when we
had the parts we need, and had potentially redundant pieces
for those prone for failure. The application software risk was
mitigated when we exhaustively tested each game play mode.

At a time when everything, from games to human interac-
tions, is moving into a digital format, our board brought back
the feeling of being physically involved in playing a game.
Our board not only felt like playing on a traditional chess set,
but added a set of features that enhanced the user experience,
whether played on a digital device, or at a chess board sitting
in a chair across from an opponent.

REFERENCES

[1] H.J. R. Murray, A History of Chess. Clarendon Press, 1913.

[2] R. D. Greenblatt, D. E. Eastlake III, and S. D. Crocker, “The Greenblatt
Chess Program,” in Fall Joint Computer Conference. ACM, November
1967, pp. 801-810.

[3] B. J. Copeland, “The Modern History of Computing,” in The Stanford
Encyclopedia of Philosophy, fall 2008 ed., E. N. Zalta, Ed. Metaphysics
Research Lab, Stanford University, 2008.

[4] (2017, April) CCRL 40/40. [Online]. Available: http://www.
computerchess.org.uk/ccrl/4040/

[5] T. Romstad, M. Costalba, and J. Kiiski. (2017) Stockfish. [Online].
Available: https://stockfishchess.org/

[6] J. K. Rowling, Harry Potter and the Philosopher’s Stone. London:
Bloomsbury Publishing, June 1997, vol. 1.

[7]1 Square Off - Worlds Smartest Chess Board.
[Online]. Available: https://www.indiegogo.com/projects/
square-off-world-s-smartest-chess-board--2#/

[8] ThomasNet. (2017) More About CNC Machining. [Online]. Available:
http://www.thomasnet.com/about/cnc-machining-45330503.html

[9] V. Engineering. (2017) Mostly Printed CNC Machine. [Online].
Available: https://www.vicious1.com/assembly/

. (2017) MPCNC Assembly. [Online]. Available: https://www.

vicious1.com/assembly/machine-size/

[11] Learn About Scrum. [Online]. Available: https://www.scrumalliance.

org/why-scrum

[12] A. Bowyer. (2017) Stepper Motor Driver. [Online]. Available:

http://reprap.org/wiki/Stepper_motor_driver

[13] W. van Niftrik. (2017) Dream Chess. [Online]. Available: http:

//dreamchess.org/

[10]

