
Herbert
Autonomous Robotic Rubik’s Cube Solver

Jonathan Whitaker, Dylan Lytle, Matt Frandsen, Li Lao
Dept. of Electrical and Computer Engineering, University of Utah

Abstract—Project Herbert is an autonomous
robotic Rubik’s Cube solver that is composed of a
complex network of mechanical and electrical devices.
In this project our team interfaced with these complex
mechanical and electrical devices so as to design
and create an autonomous robot that is capable of
solving a Rubik’s cube within two minutes of time.
This project is an integration of various technologies
including: mechanical actuators, electrical stepper
motors, single-board computers, field-programmable
gate arrays, and video cameras.

I. INTRODUCTION

The goal of this project was to create an au-
tonomous robotic Rubik’s Cube solver through the
integration of several components. The main com-
ponents integrated into our project include video
cameras, electrical stepper motors, mechanical ac-
tuators, a single-board computer (SBC), and field-
programmable gate arrays (FPGAs). A video cam-
era connects to the computer through standard
universal serial bus (USB) 2.0 protocol [7]. The
video camera is responsible for capturing the initial
configuration of the Rubik’s Cube, and the single
board computer is responsible for processing the
video frame information and generating a matrix
model for the initial state of the cube. After gen-
erating a matrix model for the initial cube, the
computer applies Kociemba’s algorithm [4] (an op-
timal algorithm used to solve a Rubik’s Cube) to
generate a solution sequence that can be processed
sequentially. The solution sequence that Kociemba’s
algorithm returns is in the standard notation used in
Rubik’s Cube discussion and theory (see Appendix
A). As each solution sequence is processed, the
computer communicates through an RS232 serial
connection to an FPGA control board which drives
the mechanical actuations and stepper motor ro-

tations needed to physically manipulate the cube.
The FPGA acts as a system control board and is
responsible for controlling the actions of two motor
control boards and a relay board used to trigger the
mechanical actuators. An overview of this process
can be found below in Fig. 1.

II. SOFTWARE IMPLEMENTATION

The single board computer in our system operates
a software stack composed of Python, Cython, and
OpenCV. We utilized a 3rd party Python library
called pyflycapture2 [3] to capture images from
the camera that was provided to us by Point Grey
Research. Once the images of the cube are captured,
we apply color recognition and categorization using
OpenCV-Python [6]. The characterization phase in
OpenCV generates a matrix model of the Rubik’s
cube. We pass this matrix model on to an applica-
tion called Kcube to generate a solution sequence
needed to solve the cube permutation. We go into
each these components in more detail in the next
few sections.

A. Image Processing

The image processing aims to capture the initial
state of the cube using a camera. The criteria
for evaluating the success of the image processing
implementation is robustness and speed of the al-
gorithm.

1) Point Grey Camera and FlyCapture Software
Development Kit: We interfaced with the cameras
using Point Grey’s API, which was provided to us
through the FlyCapture software development kit
(SDK) [2]. The FlyCapture SDK was implemented
in C. Since we chose to use Python as our base
language, we had to use Cython, an optimized static

Fig. 1. Herbert Block Diagram

compiler for C extensions in Python. We use Cython
to bind the C functions within the FlyCapture API
to Python functions. The FlyCapture SDK provided
us with a large amount of configurability, and it
gave us a flexible interface for which the cameras
settings could be adjusted to enhance capturing
mode and synchronizing image buffer retrieval.

We initially had planned to use two cameras,
each connected to the SBC through a standard USB
2.0 connection. Each one of these cameras was
going to be responsible for capturing exactly three
of the six faces of the cube with a view like that
shown in Fig. 2. However, as construction of the
main frame of our project came to a close, we
soon realized that various parts of the mechanical
system obscured the view of a large majority of

the facelets on the three faces. On top of this,
we also experienced challenges dealing with color
recognition in ambient lighting. Because of these
challenges we decided that our original camera
configuration was not ideal.

We decided to compromise and use a single
camera configuration. A single camera is used to
capture the entire state of a Rubik’s Cube. The
single camera was best positioned like that shown
in Fig. 4. A static mechanical rotation sequence is
used to capture the cube in various configurations
until all of the facelets on the cube are captured.
The cube is then returned to its original state, and
the collection of images are saved off for facelet
characterization.

Fig. 2. Initial ideal cube image capture

2) Cube Orientation: The pixel region of each of
the facelets must be identified for color recognition.
We initially planned on using a combination of
grayscale conversion and contour filtering to dy-
namically detect a bounding contour around each
of the facelets. However, the dynamic approach
to identifying a facelet pixel region proved to be
difficult due to the lack of vision of the cube. The
arm assemblies were too obtrusive to capture a

Fig. 3. HSV color wheel

clean image (see Fig. 4).
Because the camera and the Rubik’s Cube re-

mains fixed inside the mechanical frame, we de-
cided to implement a static solution. Through a
GUI interface, a static polygon for each of the
facelets was defined. Each of the static polygons
creates a bounding rectangle around a facelet pixel
region. The static solution that we adopted proved to
be consistent, but it necessitated high maintenance.
Each of the static polygons must be redefined each
time the camera position changes or if a mechanical
change affects the orientation of the cube. If we
were to continue on with this project, this is one
aspect that we could improve. It would be nice to
implement a robust dynamic approach.

Fig. 4. Obscured cube image capture

3) Color Space: Lighting condition severally
affects the robustness of the color recognition al-
gorithm. Color values on a Rubik’s Cube facelet
drastically change if the facelet is reflective or if
a shadow is cast upon it. This proved to be chal-
lenging for us. However, we were able to maintain
a consistent lighting around the mechnical frame to
mitigate a majority of these problems. We were very
confident in the color recognition algorithm under
normal lighting conditions. During demo day, we
solved over 24 Rubik’s Cubes without failure.

Choosing a color space that was robust to lighting
conditions was critical to enabling a robust color
recognition algorithm. Several color spaces such as
RGB, CMYK, and HSV were examined. The HSV
color space provided the best consistency under

various lighting conditions. The three components
of the HSV color space are hue, saturation, and
value. The hue component describes the similarity
of the color to an unique hue: red, green, blue,
and yellow as shown in Fig. 3. The saturation
component measures the intensity or “colorfulness”
of the specific hue. Finally, the value measures
the brightness of the color value. HSV is ideal
for developing a robust color recognition because
shadows and high gloss merely change the value
component of the color without affecting the hue
and saturation component of the color. Addition-
ally, the hue component can be used to distinctly
distinguish each of the primary colors such as red,
green, and blue that are found on a Rubik’s Cube
facelet.

Fig. 5. Example HSV color histogram for blue

TABLE I
HSV COLOR RANGES

COLOR HUE SATURATION
WHITE 25 - 58 0 - 139

RED 1 - 12 0 - 255
BLUE 200 - 280 0 - 255

GREEN 80 - 120 0 - 255
ORANGE 15 - 20 0 - 255
YELLOW 25 - 58 140 - 255

4) Categorization Algorithm: After identifying
a bounding contour around each of the facelets,

a categorization algorithm was used to determine
the color contained within the bounding rectangle.
Each image was first converted to the HSV color
space. The hue and saturation components of each
pixel value is then used to categorize the color.
Several color histograms such as the one shown
in Fig. 5 were constructed for each facelet and
were used to determine the ranges of each HSV
component in order to categorize a single facelet
color. For example, the histogram shown in Fig. 5
was constructed for a blue facelet. The hue values
range between 100 to 130 and the saturation values
ranges from 150 to 180. Our analysis led to the
resulting HSV ranges shown in Table. I.

Based on these color ranges, the categorization
algorithm can be implemented based on the average
of all the pixel values in the facelet region or the
frequency of each pixel value. A categorization
algorithm based on the average of HSV values
proved to be quick, but it was also error-prone due
to outliers. A categorization algorithm based on fre-
quency of each HSV component proved to be more
robust, but less optimized. Our final implementation
computes a histogram of the facelet pixel region
using OpenCV. Based on the histogram, the fre-
quency of each of the facelet colors is determined.
The highest frequency of a facelet color determines
the color that facelet is binned into.

Our initial trivial algorithm that we implemented
took approximately a minute to categorize each
facelet, because of the unoptimized looping in
Python and hardware limitations. After several it-
erative optimizations using the OpenCV library, the
overall color categorization time was reduced to
approximately three seconds. In the future, the cate-
gorization can still be optimized for both robustness
and speed. For example, the image resolution or
the overall pixel region can be reduced to improve
performance. Additionally, a filtering algorithm can
be used to reduce the effects on abnormal lighting.

B. Kcube and the Solution Sequence

Kcube is a C++ application developed by Greg
Schmidt that utilizes Kociemba’s two-phase algo-
rithm which uses two stages of an iterative depth
first search algorithm [5]. We utilized the Kcube ap-

|************|
|*U1**U2**U3*|
|************|
|*U4**U5**U6*|
|************|
|*U7**U8**U9*|
|************|

************	************	************	************
*L1**L2**L3*	*F1**F2**F3*	*R1**R2**F3*	*B1**B2**B3*
************	************	************	************
*L4**L5**L6*	*F4**F5**F6*	*R4**R5**R6*	*B4**B5**B6*
************	************	************	************
*L7**L8**L9*	*F7**F8**F9*	*R7**R8**R9*	*B7**B8**B9*
************	************	************	************

|************|
|*D1**D2**D3*|
|************|
|*D4**D5**D6*|
|************|
|*D7**D8**D9*|
|************|

Fig. 6. Rubik’s Cube matrix representation

TABLE II
CUBELET COLOR TO ASCII CHARACTER MAPPING

COLOR CHARACTER
WHITE ‘W’

RED ‘R’
BLUE ‘B’

GREEN ‘G’
ORANGE ‘O’
YELLOW ‘Y’

plication to generate the solution sequence needed
to solve the Rubik’s Cube that was captured during
the image processing phase. The matrix model gen-
erated from the image processing phase allows us
to provide Kcube’s command-line interface with the
cube representation needed to generate a solution
sequence. Kcube’s command-line interface takes six
parameters, one for each face of the cube. The
values for these parameters are the color characters
at each of the cubelet locations for that face (as
seen in Fig. 6). For example, to solve the scrambled
cube shown in Fig. 7 you invoke Kcube with the

following command:
c:>kcube L:GGWWOWBRB

F:GWGBGYWBO
U:YOOOWYROY
D:ORGWYYYRB
R:OGBBRYWRR
B:YBROBGWGR

Kcube processes the input parameters and gen-
erates a sequence of twenty-three or less moves
(see Appendix B) that, when applied to the cube,
will solve the cube. Each move is mapped to a
unique character or set of characters (see Table III),
and these characters are transmitted over an RS232
serial connection to the FPGA control board, at
which point the control board takes responsibility
for controlling the electro-mechanical stepper mo-
tors and mechanical actuators needed to physically
manipulate the cube.

III. HARDWARE IMPLEMENTATION

A. Mechanical Actuators

Herbert employs a six arm design to physically
manipulate the cube. One arm for each face of the

TABLE III
CUBE MOVES TO CHARACTER SET MAPPING

MOVE CHAR MOVE CHAR MOVE CHAR
F F R R D D
F’ Fb R’ Rb D’ Db
F2 F2 R2 R2 D2 D2
L L U U B B
L’ Lb U’ Ub B’ Bb
L2 L2 U2 U2 B2 B2

cube. In order to achieve a six arm design, each
arm actuates in and out so as to avoid conflict
with the other arms. This actuation process is a
time critical component of the design. We initially
planned on implementing the arm actuation with
motors. However, preliminary testing showed that
using motors to convert rotary motion into linear
motion is too slow, and using a linear motor actuator
is too costly. We decided that pneumatic actuation
is the solution to this problem. Each of the arms is
attached to a double action pneumatic air cylinder
as show in Fig. 8.

The FPGA control board is responsible for con-
trolling a relay control board (see Fig. 1) which
controls coaxial pairs of air cylinders. The actuation
distance for each control arm is fixed. The coaxial
pairs of arms are kept in an extended or retracted
position, depending on the current move being
executed. Potential optimizations and more stable
cube manipulations are obtained by simultaneously
extending and retracting coaxial pairs of arms. The

Fig. 7. A scrambled cube

linear actuation motion allows a coaxial pair of arms
to extend, thus encasing two sides of the cube in the
sockets of the arms. After a pair of arms extend, a
stepper motor spins the arm corresponding to the
appropriate move from the solution sequence (see
section III-B). Each air cylinder is provided approx-
imately 40-60 psi supplied from an air compressor.
To protect against any arm collisions, only one pair
of arms is in the extended position at any given
time.

Initially our design incorporated mechanical
switches that would be triggered by physical contact
of the arm assembly. These switches were mounted
on the assembly in such a way that contact would
occur in either the extended or retracted arm po-
sitions. The goal of the switch based design was
to remove an element of manual timing approxi-
mation. By using the switches we would know the
position of each arm at all times. Taking advantage
of this, there would be a much smaller hard coded
delay, or potentially no delay. However, due to time
constraints as well as accuracy issues because of
inconsistent and difficult mounting, we chose not
to implement the switches in the final design.

If we were to continue the project there are
many improvements and optimizations that could
be made. The first optimization would be to im-
plement the switch design we initially planned on.
Improving the robustness of the switches would
help reduce the time the mechanical motion takes.
This would reduce the overall time to completion,
because the mechanical motion is the most time
intensive component of the solution. Another me-
chanical optimization that would help reduce the
time to completion is to modify the arm. The image
processing was a very difficult component of this
project, because the arm assembly was obtrusive to
the view of the cube for the cameras. Our thought
is to remove two of the four prongs of each arm.
This modification would give the cameras a more
clear view of the cube, as well as potentially giving
us the ability to actuate in and out more quickly,
because potential arm collisions would be reduced.

Fig. 8. Pneumatic Air Cylinder and 3D Printed Axel Support

B. Electro-mechanical Stepper Motors

Each actuating arm has a stepper motor which
is responsible for rotating a single face. A stepper
motor rotates a face either 90 degrees or 180 de-
grees clockwise or counter-clockwise based on the
solution move that is being processed (as specified
in Appendix A). A 3D printed axle (as seen Fig. 9)
is fastened to the stepper motors. This axle twists a
3D printed arm piece in order to spin a face of the
Rubik’s Cube.

Fig. 9. Stepper Motor Arm Assembly

Each stepper motor is driven by a motor control
board which is controlled by the FPGA control
board (see Fig. 1). The motor control boards contain
a motor driver chip for each stepper motor. The

FPGA control board is responsible for controlling
the angular and temporal timing of each stepper
motor rotation.

C. Infrared Break Sensors

Rotations must end at a 90 degree angle so as to
not interrupt the rotation of another arm. These ex-
act angles are hard to accomplish by counting steps,
because it is difficult to detect whether steps are
skipped. To compensate for this we used infrared
break sensors like that shown in Fig. 10. Each arm
assembly has an infrared sensor (see Fig. 9). The
infrared sensor is broken at all angles that are not
a multiple of 90 degrees. These break sensors are
monitored and controlled through the motor control
boards.

Fig. 10. Infrared Break Sensor

D. Arm Progression

The 3D printed arm piece at the end of each
arm assembly (see Fig. 9) underwent a great pro-
gression. Fig. 11 highlights the progression of the
arm pieces from left to right. The first iteration
was a simple arm that had a square socket and
connected directly to the stepper motor without
any intermediate axel piece. The inner part of the
socket had chamfered edges to correct for any error
in alignment. The second iteration included tabs
for break sensor detection, and it was elongated
to accommodate the length of the center pin. We
also modified the socket into four prongs. This
allowed better visibility of the cube for the image
processing. In the last arm revision we changed
from tabbed break sensor detection to slits. This

improvement allowed more precise angle detection.
We also shortened the arm, added more chamfered
edges for minor alignment error corrections, and
included slight height changes to fit the slider piece
and circular cutouts to avoid arm collisions.

Fig. 11. Arm Progresssion

IV. FIRMWARE

The firmware stemmed from code received from
BioFire. Much of the code provided was only used
as a skeleton, and was modified to implement
our design. Table IV outlines the commands we
used for this project. For brevity only the main
command ”ExecuteMoves” will be described, for
details on the other commands see table IV. ”Ex-
ecuteMoves” is the main command that performs
the solution sequence generated by Kcube. Each
move is encoded with a specified face(U,F,R,D,B,L)
and an optional component either a ’b’ indicating
a counter-clockwise rotation, or a ’2’ indicating the
move to execute a half turn instead of a quarter turn.
A detailed state diagram outlining this process is
shown in Fig. 12

V. REQUIRED RESOURCES

Table V is the bill of materials (BOM) needed
to realize this project. This BOM defines the main
materials needed to realize the system as outlined in
Fig. 1. Many of the components that we used were
donated to us by industry sponsors. The components
that were donated to us include: the stepper motors,
FPGA system control board, the motor control
boards, and the Chameleon USB2.0 camera. The
stepper motors, motor control boards, and the FPGA

Fig. 12. ”ExecuteMoves” State Diagram

system control board are “in-house” proprietary
boards developed by BioFire Defense Systems.
The FPGA board embeds a Xilinx Spartan3 with
a softcore Microblaze processor. The Chameleon
USB2.0 cameras were donated to us by Point Grey
Research. They a 1.3 megapixel camera with a Sony
ICX445 CCD, 1/3”, 3.75 micron sensor.

VI. SUMMARY

This project is evidence of our team’s ability
to design a complex system containing software,
electrical hardware, and mechanical hardware com-
ponents. Project Herbert is a project that integrates
various technologies and domains of engineering
into one complete package. Working on this project
has exposed us to a real-world application of sys-
tem integration and, most importantly, teamwork.
Project Herbert brought many challenges to our
team, and we were able to overcome them with
clever compromises. The image processing proved
to be very difficult due to the lack of vision and poor
lighting effects. We overcame this by creating a
clever execution of moves that allowed us to capture
all of the facelets using a single camera, as well as
a unique color characterization that uses histogram
calculations. We were unable to get robust and
reliable switches for the mechanical actuations, and
so we slowed down the actuations to ensure that

TABLE IV
FIRMWARE COMMANDS

Command Parameters Description
ActuateArm 1 Toggles the relay board to control the pneumatic actuations of coaxial pairs of arms.
DisableMotors 0 This command disables the motors.
TimingTest 0 Perform an actuation and spin motion for time testing.
Abort 0 Halts all motion and clears buffers holding the solution sequence.
MoveRelative 2 Manually spin the arm by moving the specified stepper motor the given number of steps.
MR 2 Equivalent to MoveRelative just a shortened alias.
GetRawSwitches 0 Gets all of the current values for all of the switches.
GetRawSensors 0 Gets all of the current values for all of the break sensors.
GetSwitch 1 Gets the current value for the specified switch.
GetSensor 1 Gets the current value for the specified break sensor.
ExecuteMoves Variable Performs the correct actuation and spin sequence for each of the moves provided.
IsIdle 0 Queries the motion state machine to determine if motion is still in progress.
InitArms 0 Spins each arm until its corresponding break sensor is not blocked.

TABLE V
MAIN COMPONENT BOM

Part Description Quantity Vendor Vendor PN Price/Unit (dollars)
Stepper Motor 6 BioFire Defense NA DONATED
Pneumatic 12mmx25mm Double Action Thin Air Cylinder 6 Amico A12030500UX0057 7.86
24V 2 Position 5 Way Pneumatic Solenoid Valve 6 Uxcell A11102700UX0130 10.31
FPGA System Control Board 1 BioFire Defense NA DONATED
Motor Control Board 2 BioFire Defense NA DONATED
8 Channel 5V Relay Board 1 SainSmart 20-018-102 11.99
Chameleon USB2.0 Camera 2 Point Grey Research CMLN-13S2C-CS DONATED

any two adjacent arms would not collide with one
another. Likewise, team scheduling proved to be
another challenge for us. Half of our team works
part-time. This made it difficult to find times to
work on the project together. However, despite these
challenges, we were able to implement the Rubik’s
cube solver as we had planned. We did not have
enough time to make further optimizations to go for
a Guinness World Record, but we are very satisfied
to have a completely automated solver despite all
of the compromises that we had to make.

VII. ACKNOWLEDGEMENTS

Our team would like to thank BioFire Defense
LLC, Point Grey Research Inc., and Futura Indus-
tries for all the support and resources they have pro-
vided us. Your contributions are greatly appreciated.

BioFire Defense donated the various control
boards and mechanical components needed for this
project. They also gave us access to various proto-
typing tools including high precision 3D printers
and laser cutters. A special thanks goes out to

BioFire engineers Logan Taylor (Mechanical), Pat
Riley (Electrical/Systems), Matt Murdock (Electri-

cal), and David Nielsen (VP of Product Develop-
ment). These individuals provided invaluable time
and knowledge to our team.

We’d also like to thank Vladimir Tucakov of
Point Grey Research. He provided our team with
their Chameleon CMLN-13S2M-CS camera which
we used for image acquisition.

We couldn’t have put all these components to-
gether without a nice chassis to house them all.
For this, we would like to thank Futura Industries.
They helped us in the design and construction of the
aluminum frame we used to house Herbert. Another
special thanks goes out to Futura’s Kenton Frandsen
(Mechanical/Manufacturing Engineer) who assisted
in the mechanical design of the mechanical arms
and frame of our project.

REFERENCES

[1] Joseph Converse. Basic Notation. URL: http:
/ / astro .berkeley. edu /∼converse / rubiks .php?
id1=basics&id2=notation.

[2] FlyCapture SDK. Point Grey Research. URL:
https://www.ptgrey.com/flycapture-sdk.

[3] Robert Jordens. pyflycapture2. URL: https : / /
github.com/jordens/pyflycapture2.git.

[4] Herbert Kociemba. The Two-Phase Algorithm.
URL: http://kociemba.org/cube.htm.

[5] Herbert Kociemba. The Two-Phase Algorithm.
URL: http://kociemba.org/twophase.htm.

[6] OpenCV-Python. OpenCV Developers Team.
URL: http : / / opencv - python - tutroals .
readthedocs . org / en / latest / py tutorials / py
setup/py intro/py intro.html#opencv-python.

[7] USB 2.0 Specification. URL: http://www.usb.
org/developers/docs/usb20 docs/.

APPENDIX

In order to solve a cube, it is standard to de-
fine the terminology and orientation layout used
in Rubik’s Cube theory and analysis. This section
describes the basic notation that is used throughout
this document.

A. Faces

A Rubik’s Cube is composed of six faces: right
(R), left (L), up (U), down (D), front (F), and back
(B) (see Fig. 13). The exact color of each face is

relative to the orientation in which you are holding
the cube. For example, if you align the blue face
towards you then the blue face is defined as the
front face. Each face can be rotated in two different
directions: clockwise or counter-clockwise. These
rotations are defined as the direction of rotation
when looking directly at that face.

Fig. 13. Cube orientation

B. Fundamental Moves

The most fundamental moves are 90-degree
clock-wise rotations for each of the faces outlined
above. These moves are outlined below [1]:

• R - Indicates a 90-degree clockwise rotation of
the right face such that the side on top rotates
towards the back.

• L - Indicates a 90-degree clockwise rotation of
the left face such that the side on top rotates
towards the front.

• U - Indicates a 90-degree clockwise rotation
of the upper face such that the side in front
moves to the left.

• D - Indicates a 90-degree clockwise rotation of
the downward face such that the side in front
moves to the right.

• F - Indicates a 90-degree clockwise rotation of
the front face such that the side on top moves
to the right.

http://astro.berkeley.edu/~converse/rubiks.php?id1=basics&id2=notation
http://astro.berkeley.edu/~converse/rubiks.php?id1=basics&id2=notation
http://astro.berkeley.edu/~converse/rubiks.php?id1=basics&id2=notation
https://www.ptgrey.com/flycapture-sdk
https://github.com/jordens/pyflycapture2.git
https://github.com/jordens/pyflycapture2.git
http://kociemba.org/cube.htm
http://kociemba.org/twophase.htm
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_setup/py_intro/py_intro.html#opencv-python
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_setup/py_intro/py_intro.html#opencv-python
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_setup/py_intro/py_intro.html#opencv-python
http://www.usb.org/developers/docs/usb20_docs/
http://www.usb.org/developers/docs/usb20_docs/

• B - Indicates a 90-degree clockwise rotation of
the back face such that the side on top moves
to the left.

C. Modifiers

For each of the fundamental moves above, there
are modifiers that can be appended to the move to
change the rotation of the face. My example below
uses L as the base move, but these modifiers can
be applied to any of the fundamental moves.

• L’ - Indicates a 90-degree counter-clockwise
rotation of the left face such that the side on
top rotates towards the back (opposite direction
as that defined above).

• L2 - Indicates a 180-degree rotation of the left
face (two rotations).

D. Cubelets

A cubelet refers to a particular piece on the cube.
Cubelets are categorized based on their position.
There are three types of cubelets: center cubelets,
edge cubelets, and corner cubelets (see Fig. 14). A
center cubelet is unique. All other cubelets revolve
around the center cubelets, they never move (go
ahead, try and move the center piece). Edge cubelets
connect two face pieces together at an edge. A
corner cubelet connects three pieces together at the
corner of the cube.

Fig. 14. Cubelet categories

	Introduction
	Software Implementation
	Image Processing
	Point Grey Camera and FlyCapture Software Development Kit
	Cube Orientation
	Color Space
	Categorization Algorithm

	Kcube and the Solution Sequence

	Hardware Implementation
	Mechanical Actuators
	Electro-mechanical Stepper Motors
	Infrared Break Sensors
	Arm Progression

	Firmware
	Required Resources
	Summary
	Acknowledgements
	Appendix
	Faces
	Fundamental Moves
	Modifiers
	Cubelets

