
KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 1

Project Smart Sword
Kristen Argyle, Michael Anderson, Aundrea Hargroder

Abstract—Martial sports are a paradox – a compromise
between safety and accuracy, especially when weapons-based
martial arts are the basis for a martial sport. Weapons by
their nature are dangerous and every step taken to make them
more safe changes their essential characteristics. By design, safe
weapon simulators make it less obvious when a fight-ending
injury would have occurred. Thus, it is difficult to assess in
martial sport how much the martial art is being applied and
practiced. Using technology, this project has addressed that
problem. This project integrated an embedded system that detects
and reports martially sound strikes into a European Longsword
simulator. This system filters out parries and contact too light to
be considered valid while assessing the quality of a true strike.
The entire system is contained within the sword simulator while
disturbing its handling as little as possible.

Index Terms—force sensor, accelerometer, martial arts, martial
sports, sabertron, contact assessment, rotational dynamics, force
threshold, force sensor array, impact efficiency, sweet spot

I. INTRODUCTION

IT’S A SWORD, said the Hogfather. THEY’RE
NOT MEANT TO BE SAFE.1 [1]

Use of electronics in martial sport is nothing new. Electric
scoring was adopted for Olympic Fencing competition in
1936 [2]. Though fencing is virtually alone in its use of
electronic scoring, numerous small studies and applications
have been used in assessment of martial sport. Accelerometers
and force sensors are an obvious choice to get a more objective
estimate of an impact’s imparted force. Using such methods
as a judging mechanism would be unnecessary for sports like
boxing and mixed martial arts, since the winner is determined
by who is left standing, roughly speaking. Spectators and
judges don’t need a readout of the force behind a punch to
determine if it did damage – the damage is there to see and
the competitor will either carry on or succumb. With fencing,
on the other hand, this option is not available as it is imitating
a fight with weapons far more deadly than fists.

Some martial sports scale back the potential damage by
imposing restrictions on competitions, allowed techniques,
etc., but weapons-based martial sports are always bound by the
safety imperative to introduce simulators for the weapons they
train. In a competitive environment even weapon simulators
can be dangerous, so safety equipment is also used. This is
common sense preservation of life and limb, evident even
historically in the use of wooden training weapons.

Enter modern European longsword competition and training
[3]. Judges are still needed for competitions while honesty is
necessary for friendly free-bouting. Both methods are prone
to problems of subjectivity and human error, not to mention
the constant monitoring that competitors must impose on
themselves. Competitors have a twofold challenge in two

1RIP, Sir Terry

Fig. 1. A one pound foam sword with electronic scoring using accelerome-
ters, Bluetooth, and a touchscreen [4].

directions: 1) did they receive a hit, 2) did they deliver a
hit, and then both are multiplied by the question: was the hit
seen/felt and counted? Our project aims to use technology to
alleviate these problems.

II. BACKGROUND

A company, LevelUp Inc., has already created a solution
for counting sword hits. It is called ”Sabertron,” and it caters
to the more casual field of foam sword fighting, a prototype
of which can be seen in Fig. 1. Using components found in
cell phones, the product discards detected hits to the opposing
sword and counts hits to the body. All of this is contained in
the sword [4]. For our project this was a convincing proof-of-
concept for our own version which uses more rigorous sword
simulators.

We decided to improve on the Sabertron design by main-
taining the integrity of historical sword fighting. We did this
in two ways. First, we made the physical modifications to the
sword minimal. The mounted system components affect the
weight and feel of the sword in the slightest amount. Second,
we implemented real-time analysis of hits. The user must be
informed of the success of their hit in the same amount of
time as they would in a real fight.

III. PROOF OF CONCEPT

In ECE 5780 Embedded Systems, we implemented the
following basic requirements for our smart-sword system as a
proof of concept:

1) Hit detection
2) Outward indication of hit detection
Our basic implementation consisted of two seperate sys-

tems, each with an acceleromter, an STM32F4 Discovery
Board, an Arduino, a Piezo speaker, LEDs, and an RF tran-
ceiver. This system lights a green LED when a hit is detected



KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 2

Fig. 2. The functional block diagram is a higher-level depiction of the proof-
of-concept design for 5780 Embedded Systems.

and plays a sound through the speaker2. Additionally, the hit
detection is communicated through the RF tranceiver to the
other system. This allows for the detection of simultaneous
hits, which mimics the action of two swords striking each
other. When a simultaneous hit occurs, each system detects a
hit and communicates it to the other, and the simultaneous hit
is indicated with a red LED and a different sound through
the speaker. This is a raw proof-of-concept for the most
important parts of the project and is not the entirety of the base
functionality we want for our Senior Project. The functional
block diagram for our proof-of-concept design is shown in
Fig.5.

IV. PROJECT WORK

The requirements that we originally planned implement for
the Senior Project were:

1) Assessment of quality of hit
2) Discarding hits to opposing sword
3) Upload and display of information off-sword
The primary goal of our smart-sword system is to enhance

the training experience through automation while maintaining
the integrity of authentic sword fighting. In order to achieve
this goal we determined a priority list for the measurements
and capabilities of this project.

The measurements this project prioritized were:
1) Impact force
2) Character of impact
The smart-sword capabilities this project prioritized were:
1) Safety features preserved
2) Handling features preserved
3) Ruggedness of measurement equipment
4) Sensitivity of measurement equipment

We chose to use accelerometers because they are small sensors
which can easily fit within the body of a practice sword.
Accelerometers are also very cost effective. We feel that
accelerometers will provide the best data for performing hit
detection analysis.

A graphical overview of the smart-sword design is shown in
Fig. 3 below. The three main components of the project are the

2This was our ECE 5780: Integrated Circuits project.

Fig. 3. The overview of the smart-sword mounting design.

sword with sensing and communication ability itself, the server
and application that interprets, displays, and communicates
instructions to the swords, and the database and web UI that
serve as information presentation to users.

To address the issue of assessing hit quality we researched
other projects which also addressed this issue. The point on a
bat at which the most energy is transferred is often referred to
colloquially as the ”sweet spot.” The less one’s hands feel rat-
tled by an impact, the more efficient the energy transfer – and
the less discomfort for the user. In a series of experiments with
cricket bats, engineers used 3-axis accelerometers to detect the
amount of lost energy, or ”jarring,” upon an impact in order
to identify the sweet spot on a cricket bat [5]. Accelerometers
were placed on both the wrists of the batter and on the bat, as
pictured in Fig. 4.The data revealed that different parts of the
bat indeed caused different wrist accelerations, and they were
able to estimate the location of the sweet spot [5].

Fig. 4. Accelerometer locations for cricket bat ”sweet spot” tests [5].

We have been successful in detecting if a hit has oc-
curred using an accelerometer. To detect the large changes
in acceleration that characterize a sword strike, only a single
accelerometer is required. This is insufficient for calculating
the efficiency of a strike, but sufficient for detecting an impact.
Based on this study, we knew more than one accelerometer in
the right area can give us information on the quality of the hit.
Quality for us indicates how efficient the strike was. A hit on



KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 3

the point of percussion will result in the most force imparted
to the target and the least kickback to the hands [6].

In the proof-of-concept design this hit detection was done
with one accelerometer located on the STM32F4 Discovery
board. In our final project we have two dedicated accelerom-
eters at different locations to gather more sophisticated accel-
eration readings.

1) Hit Detection: For hit detection, we used two accelerom-
eters in each sword. For our tests we found that hits usually
show acceleration between 25 Gs and 100 Gs. An example
of some rapid hit data can be seen in Fig. 5. We chose a
ADXL377 accelerometers for our project running in +/- 200G
mode which proved to be more than sufficient for our needs.
Using these accelerometers we can apply the concept from the
cricket-bat study to our application to determine the quality of
a hit. From a close up of a particular spike, we can confirm
that there is one distinct peak for each strike 6.

Fig. 5. A series of taps in Gs at the center of percussion accelerometer. The
time axis is approximately in milliseconds.

Both accelerometers are connected to anolog input pins on
an Arduino Fio v3. The Arduino is also equipped with a RN42-
XV Bluetooth Module.

The Arduino waits for the server application to establish a
Bluetooth connection. The Arduino runs in two modes: capture
mode and idle mode. In idle mode the Arduino simply waits
for a command from the server over the Bluetooth connection.
Commands are simply sent as a single byte over the Bluetooth
socket. The commands which are utilized in our model only
include the START command and the STOP command. The
START command corresponds to a byte with the value 65 and
the STOP command corresponds to a byte with the value 66.
The START command puts the Arduino into capture mode and
the STOP command puts the Arduino into idle mode.

In capture mode data from both the accelerometers on a
sword is gathered from the Arduino. While in capture mode
the Arduino continuously samples the ADC for each of the
three axes of the two accelerometers and then immediately
sends the data it sampled to the server application. When the
Arduino ADC is sampled an integer between 0-1024 is re-
turned which maps to a +/-200G reading by the accelerometer.
The Arduino breaks the accelerometer ADC value for each
axis into 2 bytes and sends each byte to the server over the
Bluetooth socket. When the client receives a STOP command

Fig. 6. A series of taps in Gs at the center of percussion accelerometer. The
time axis is approximately in milliseconds.

it acknowledges the end of the stream by sending the ASCII
characters ”STOP”. This acknowledgment is required so that
the server knows when to stop expecting data.

The server recombines the bytes and analyzes them as they
are received for sudden changes in acceleration. If the server
sees a sudden change in acceleration which exceeds 25G then
the server assumes it has seen a hit on that sword. The 25G
threshold was found through extensively testing our system.
Once the server sees a hit from one sword it waits a small
amount of time for the other sword to also report a hit before
it takes any action. If within this wait time the server sees a
hit on the other sword then the server assumes that the hits
detected on each sword are a result of the two swords striking
each other and counts the event as a parry. If, however, there is
no hit reported by the second sword during this wait window,
then the server assumes that the event must be a hit. When the
server sees a hit then all of the accelerometer data for this hit
is saved for post-event analysis. Post-event analysis introduced



KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 4

Fig. 7. The overview of the smart-sword mounting design. There are two
accelerometers, one battery, one Arduino, and one Bluetooth communication
module.

the challenge of maintaining our baseline functionality while
transmitting data to an alternate location to be logged. To
address this issue the server maintains a rolling queue of data
for the purpose of reporting hit data. If the server sees a hit
then it spawns a new thread and gives the new thread a copy
of the rolling queue (which contains the data from the hit).
The thread identifies which part of the data is related to the
hit and logs the hit and it’s associated data to a database.

A. Base Simulator and Mounting System

If we had initially used a stick for testing and calibration
and then moved to a sword, our numbers would have been off
due to the fact that a sword is weighted and mass distributed
differently than a hegemonic stick. Therefore, we performed
all our testing and development on a nylon sword simulator of
comparable weight and mass distribution to a real sword from
Purpleheart Armory [7]. This simulator is in the same series
used for HEMA tournaments [7] [8].

A high-level diagram of our mounting system can be seen in
Fig. 7. One accelerometer is placed at the center of percussion,
while the other rests near the hilt. The Arduino, Bluetooth
module, and the battery are all located away from the sword
proper in order to protect them and keep handling variations
to a minimum.

An example of the specific model of sword we chose can
be seen in Fig. 8. We’ve chosen our simulator based on a few
criteria. Already mentioned was weight and mass distribution
as we want to preserve the integrity of a real sword’s handling,
which lead us to the Pentti Type III series. The attachable hilt
turned out to be unnecessary for our purposes, as we decided
to avoid drilling into the sword.

The mounting system went through several iterations. Our
specific needs became clear with each refinement. We needed

Fig. 8. The base simulator we used to calibrate and test our smart sword
design. This model was originally designed for use in hot, dry climates, as
the other models had a tendency to break [7].

the wires soldered directly to the board, since single headers
and jumper wires would both increase our footprint and had
a tendency to become dislodged during use. Ease of access in
case of solder breaks or other wiring issues became imperative
as we continued to test. Lastly, we went with a ribbon wire
with crimp connectors and shrouded headers to connect the
center of percussion accelerometer to the board. The wiring
diagram and header orientations can be seen in Fig. 9.

We used mold-able plastic with a low melting point to
fashion our case and mount. This plastic can be melted with a
typical heat gun, but hardens at room temperature. Two bolts
on either side of the sword and a plastic plate on the other side
served to keep the case in place. The system already mounted
can be seen in Fig. 10.

The Arduino Fio was mounted directly to the plastic via
small bolts, using nuts to create space between the plastic and
the components and accelerometer. We mounted the XBee-
esque bluetooth module in the space on the Arduino Fio
normally reserved for an XBee. The hilt accelerometer was
soldered directly to the necessary pins. This allowed us to have
all the components for the hilt in one case. The mounting plan
can be seen in Fig. 11.

The center of percussion accelerometer was housed in its
own plastic case, and the connections were directly soldered
to a shrouded header for the crimped wire ribbon.

1) Hit Indication: The first form of hit indication performed
by the smart-sword system was through LEDs placed on the
hilt of the sword. In the final project hit determination is
made by the server application. It is very simple to define an
additional command in our Bluetooth communication protocol
that would allow us to tell the sword to generate a notification
indicating a hit. For our project we originally decided to have
the sword generate hit indication but creating a system which
could easily show hit indication was not implemented. We
originally planned to place LEDs on the sword that would
flash when a hit occurred, but the LEDs didn’t operate on a
voltage that we could supply with our board. An additional
transformer was required to power the LEDs. We opted to
keep the sword footprint as small as possible and just perform



KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 5

Fig. 9. Final wiring diagram for the connection between center of percussion
accelerometer header and the hilt header.

hit indication on the server application. The server application
keeps a scoreboard which updates as hits and parries are
detected and also plays sounds when hits are detected.

2) Hit Assessment: In order for hits to have meaning, we
must know if the sword hit another sword or if it hit a
person. In our proof-of-concept solution we were able to make
both swords communicate wirelessly with one another. We
used RFID communication in this design. When one sword
registered a hit, it was able to first confirm with the second
sword. If the second sword also detected a hit, it registered the
hit as sword-to-sword contact. If one sword did not register
a hit and one did, it was counted as a hit to a person. We
were very pleased to see this basic implementation work in
the proof-of-concept design. However, the results were not
always accurate – occasionally hits were misinterpreted.

We instead decided to remove the sword to sword communi-

Fig. 10. The final casing attached to the base sword. We used two different
locations on each sword as the mounting point to test which might be better.
Both performed well.

Fig. 11. a) Fio v3 - ATmega32U4, b) SparkFun Triple Axis Accelerometer
Breakout - ADXL377, c) RN42-XV Bluetooth Module - PCB Antenna.

cation and have both swords communicate with a server which
could preform more advanced analysis of the data. However,
the parry vs hit assessment method is almost the same as in
the old sword to sword communication model.

This leaves open a gap – what if two people hit each other at
the same time? The accelerometer data should spike differently
for sword-to-sword contact than for sword-to-person contact.
During our final project we attempted to analyze the data
from our accelerometers to determine if the hit was against a
sword or a person, but we weren’t able to reliably detect this
information based on the accelerometer data alone. We opted
to measure the time between accelerometer spikes in order to
detect a parry vs a hit. We were able to reliably detect parries
by looking for accelerometer peaks which occurred less than
50 ms apart. For two separate hits to be counted as a parry they
would need to both occur during this small 50 ms window. We
decided that this edge case probably occurs too rarely to worry
about for our project scope.

B. Advanced Functionality

1) Hit Analysis: We originally planned to perform ad-
vanced hit analysis with our swords. In order to analyze hit



KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 6

Fig. 12. A diagram showing important locations and forces working on a
sword. In the top image, F is an impulse force on the blade at the center
of percussion and Fh is a reaction force, while vh is a reaction velocity on
the grip of the blade. The center of mass’s movement after the impulse force
is represented by its velocity v and its angular speed ω. The bottom image
shows an analysis relative to the rotating arm [6].

efficiency, we needed at least two accelerometers: one to tell us
the acceleration change measured at the center of percussion
and another at the hand pivot node. By comparing these, we
planned on analyzing the difference between an efficient strike
and a light tap to get a rough estimate of the actual efficiency
of the strike.

For example, a deceleration spike at point A with very little
jarring at point B would be consistent with a good hit to the
center of percussion. Two smaller spikes at both points would
indicate a less optimal strike. The more accelerometers we add
to specific nodes the better we can analyze the strike and filter
out any false-positives.

The data resolution we were able to obtain during the
project however was very poor (approximately 1 sample per
accelerometer axis per millisecond). Our server analyzes the
acceleration of our hits to determine how hard the hit was.
We were not able to perform any analysis concerning hit
efficiency in our implementation, but we believe that such
an analysis is possible with better resolution data and more
time for studying the hit data. Simply comparing the ratio
of acceleration between the hilt and the point of percussion
should give some indication of how efficient the hit was, but
we didn’t have time to implement such an analysis system
during our project timeline.

2) Interface: The main form of indication and assessment
of hits were moved to the server and application. A high-level
diagram of our base station can be seen in Fig. 13.

The server application stores all the data about hits it detects
and matches it starts. If a hit or parry is detected the data is
then sent to a MySQL database for long term storage where
it can be analyzed. A RESTful API was developed using
PHP for the purpose of managing data within our database.
Because the server application must be run within Bluetooth
range of the swords it becomes difficult to maintain a central

Fig. 13. The high level view of the interactions of the base station.

database which contains all the information from matches.
The RESTful API was developed to provide an interface for
the server applications to read and write data in the database
with a protocol which is not extremely sensitive to latency.
The RESTful API allows applications to be written in any
language and interact with our database. The server application
integrates with the RESTful API and automatically starts
matches and registers hits/parrys. As hits occur the server logs
the accelerometer data in real time through the RESTful API.

3) Custom Boards: Ideally, component placement on the
smart-sword would have been completely optimized. This
means processors and non-sensor hardware could have been
moved to a place subjected to less impact stress, while sensors
could have easily been placed at specific nodes where the
physics are easily calculated, known, and helpful. Due to its
size, the STM32FR Discovery board from our original design
is unwieldy and prone to being struck. We were able to shrink
the footprint of our design with the Arduino Fio v3, but we
hoped to shrink the footprint further by printing a board for our
project. Time constraints didn’t allow for this to be completed.
A custom shaped board (or boards) would have also been
helpful in order to embed the system in the sword simulator
without disturbing the sword’s shape or handling. This is
mostly an advantage for mass modification or manufacture
of the smart-sword system. We decided that for our project it
would be best to stick with the Arduino and after developing
a working system start to design a custom board.

A custom board for this project would likely fit a micropro-
cessor, a Bluetooth module, and an accelerometer in as little
space as possible. That way both accelerometers on the sword
could communicate wirelessly, and multiple accelerometers
could be mounted for research purposes.

C. Additional Features

1) Charger: The sword contains a rechargeable lithium-
ion battery. The sword can run off a micro USB connection



KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 7

or the rechargeable battery. The Arduino Fio v3 manages the
battery charging. Unfortunately one of the limitations of our
Arduino Fio v3 is that there is a switch which needs to be
toggled when the battery is charging. Failure to toggle the
switch connects the power from the USB and the battery and
causes overvoltage on the Arduino Fio v3.

During our testing we found that the battery lasts several
hours depending on how long the sword is actively capturing
data.

2) Advanced Interface: Using the data logged into the
SQL database we were able to create additional interfaces
for interacting with data. We successfully developed a website
which allows users to register themselves and keep track of all
their matches and hit data. It also contains some fun features,
such as a page for users to view their rankings amongst other
smart-sword users. The database keeps track of the users,
matches, and hits and associates all of this information so
it can be easily retrieved.

3) Android Application: An Android application was de-
veloped for integration with our swords and the API. The
application is capable of browsing match history and viewing
hit/parry data as it is being logged. The Android application is
also capable of pairing with the swords and starting a match.
The Android application uses the aforementioned RESTful
API to retrieve match and hit/parry data in addition to logging
data about new matches and hits.

D. Project Issues

Our team ran into a number of issues during our project
implementation. We felt that the biggest risk of our project
was the physical strain placed on the electronics. Sabertron
limited this strain by using foam swords. Since the material our
swords are built from is less forgiving than foam, the physical
strain on our electronic components was more significant.
Accelerometers are designed to tolerate a certain level of
impact stress, but given the somewhat chaotic environment
of competition they may be subjected to more stress than
intended.

The risk of breaking parts placed constraints on the mechan-
ical design of our project. Parts need to be readily accessible
and replaced should the worst happen. This meant parts needed
to be attached with a method of extraction that doesn’t damage
the sword. A large portion of our time in this project was spent
on developing a reliable functional case for our embedded
system which addressed these concerns.

During initial testing of the Bluetooth data logging our team
noticed that we were not detecting some of our hits. Further
investigation led us to find that we were getting samples from
the Arduino at a very slow rate. We were initially getting
approximately 300-400 samples per axis per second for a
single accelerometer. We solved this issue by increasing our
Bluetooth baud rate from the default value of 9600 to 115200.
This change increased the number of samples we were getting
to approximately 1500 samples per axis per second for a single
accelerometer. Originally our code was also sending the ADC
values as ASCII delimited by commas. We changed the code
to send raw bytes instead of ASCII. After this change we

started to receive 2000 samples per axis per second for a single
accelerometer. After adding our second accelerometer to the
Arduino we started receiving 1000 samples per axis per second
for 2 accelerometers.

After the change to the way acceleration data was sent, we
started to notice another issue with our server. Occasionally,
the data we received started to not make sense. The values
being received were too large to have come from the Arduino
ADC (values outside the 0-1024 range that the ADC provides).
We noticed that the invalid data that we were receiving made
sense if we processed the bytes in the reverse order. Because
our application receives bytes 2 at a time and combines them it
requires that we receive every byte in order from our Arduino.
Debugging was difficult, as the very process of interrupting the
program caused interruptions to the byte stream. However, we
determined that the bytes were being lost because the socket
buffer was overflowing. The issue occurred most often when
registering a hit because notification of the controller function
would delay the serial monitor code enough to cause the socket
buffer to overflow. We extended the size of the socket buffer
and made hit logging run on a separate thread to address this
problem.

We originally planned to analyze what kind of hit was
made – cut, thrust, slice – but this analysis logic was not
implemented in our project. The slow sampling rate of our
sword makes this kind of analysis very hard. We also noticed
that a hit which visually appeared to be made along a single
axis (e.g. a hit which was made directly against the edge of
the blade), would also produce large spikes in acceleration in
other axes of the sword. This made analysis of how the sword
was contacted extremely difficult if not impossible with more
advanced data.

Since our project goes beyond all-real-time functionality,
we needed to consider the risks of creating additional data
logging and analysis systems for post-event assessments. We
run the risk of bogging down the speed of the real-time
system by preserving information. We feared that navigating
this hazard may end up taking too much time and effort
and cause potential overhauls of our system. Fortunately, our
decision to offload the data analysis to a server allowed for
this information to be easily logged over the RESTful API on
a separate thread when a hit was detected by the real time
analysis.

We thought to add GPS data logging to our sword during
our project planning. The GPS module would allow us to
very accurately synchronize time on the device so that it is
able to better correlate data with the other sword. However,
because swords are no longer communicating with each other
in our new design it wasn’t necessary to have time between
the swords accurately synchronized. We also had the idea that
we might want to track teams of users simultaneously. The
GPS data would have been used to tell us which users were
in immediate proximity of each other, so we could determine
which combatants were currently engaged. Unfortunately the
precision of consumer GPS made this goal fairly impossible.
As a result we did not implement any GPS capabilities into
our project.



KRISTEN ARGYLE, MICHAEL ANDERSON, AUNDREA HARGRODER, ECE 4710, SPRING 2015 8

V. PROJECT RESOURCES

TABLE I
PARTS USED IN PROJECT

Fio v3 - ATmega32U4
RN42-XV Bluetooth Module
Nylon Practice Longsword
2 ADXL377 Accelerometers
5v Lithium ion battery and charger

.

REFERENCES

[1] T. Pratchett, Hogfather. Victor Gollancz, 1996.
[2] (2015) Fencing. [Online]. Available: http://www.britannica.com/

EBchecked/topic/204172/fencing/2263/Organized-sport
[3] M. W. Bishop, “Medieval weapon finds modern appeal,” New York

Times, 2014, 15 September. [Online]. Available: http://nyti.ms/1uBcsWD
[4] T. R. D. Lynch, J. Davidson. (2015). [Online]. Available: http:

//sabertron.com/
[5] A. K. Sarkar, D. A. James, A. W. Busch, and D. V. Thiel,

“Cricket bat acceleration profile from sweet-spot impacts,” Procedia
Engineering, vol. 34, no. 0, pp. 467 – 472, 2012, {ENGINEERING}
{OF} {SPORT} {CONFERENCE} 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1877705812016931

[6] M. Denny, “Swordplay: an exercise in rotational dynamics,” European
Journal of Physics, vol. 27, no. 4, p. 943, 2006. [Online]. Available:
http://stacks.iop.org/0143-0807/27/i=4/a=025

[7] (2015) Type iii federschwert longsword plastic guard 1. [Online].
Available: http://www.woodenswords.com/product p/type-iii-f-pg1.htmr

[8] (2015, 18 April) Study in steel. [Online]. Available: https://www.
facebook.com/events/381670271994783/r

http://www.britannica.com/EBchecked/topic/204172/fencing/2263/Organized-sport
http://www.britannica.com/EBchecked/topic/204172/fencing/2263/Organized-sport
http://nyti.ms/1uBcsWD
http://sabertron.com/
http://sabertron.com/
http://www.sciencedirect.com/science/article/pii/S1877705812016931
http://www.sciencedirect.com/science/article/pii/S1877705812016931
http://stacks.iop.org/0143-0807/27/i=4/a=025
http://www.woodenswords.com/product_p/type-iii-f-pg1.htmr
https://www.facebook.com/events/381670271994783/r
https://www.facebook.com/events/381670271994783/r

	Introduction
	Background
	Proof of Concept
	Project Work
	Hit Detection
	Base Simulator and Mounting System
	Hit Indication
	Hit Assessment

	Advanced Functionality
	Hit Analysis
	Interface
	Custom Boards

	Additional Features
	Charger
	Advanced Interface
	Android Application

	Project Issues

	Project Resources
	References

