
1

Making a Smarter Microwave
Stuart Johnsen, Darin Stoker, James Watts

University of Utah
Department of Electrical and Computer Engineering

Abstract—The planning and implementation of a smart mi-
crowave is discussed. The main components of the project are
dissected, including the microwave modifications, the hardware
bridge construction, the Android application code, and the
Arduino sketch code. Challenges in completing the project are
discussed, as are potential future improvements.

I. INTRODUCTION

As electronic technology is increasingly incorporated into
aspects of daily life, one of the last remaining product
families that has been nearly untouched by the technology’s
advance has been in the kitchen. Particularly, advances in
microwave oven technology has stagnated, even as other fields
of technology have advanced ease and life comfort. Some of
this is due simply to the the simplicity of microwaves; they
are not particularly complex devices. The overall circuitry
for controlling a microwave is virtually identical to its first
inceptions, and this reliability and simplicity has made it easy
for microwave manufacturers to pump them out at low cost,
with little incentive to make them ”smarter” or user friendly.
Simple microcontrollers have been added over the years, and
basic improvements to user interfaces have been made, but in
relation to the improvements being made in user interfaces,
databases, and other technologies have not translated to direct
use in the kitchen.

A. Motivation

In researching the background and history of microwave
ovens, we found that the aesthetic and user-friendly qualities
of microwaves have only been lightly improved upon since
they became household items. While digital interfaces became
common for readouts and button presses, the overall way that
people interact with microwaves has not changed in many
years. And even though microwaves are pretty ubiquitous
items, we found that even we as engineers did not under-
stand how they worked or why the seemingly un-resolvable
problems with microwaves have lingered on.

In our research, we found that microwaves were not in-
credibly complex devices, nor were those ”un-resolvable”
problems all that difficult to solve. Even with our student
engineer credentials, we found that we ourselves could take
a stab at making the microwave more user friendly. Using a
combination of hardware engineering and computer science,
we decided to make a ”smarter” microwave.

B. Proposal

We propose a solution to upgrade the currently outdated
technology found in microwave, specifically in relation to

the user interface and ease of use. Using a combination
of software application development and embedded systems
engineering, we have developed a prototype system to increase
the capabilities of the household microwave, including the
following upgrades:

1) An update-able database of entries containing informa-
tion on food items and encoded instructions for cooking
them.

2) An Android application to control the microwave, com-
prising of:

a) A connection to the food information database.
b) Multiple modes for cooking food based based on

user input or on database instructions.
c) A method for manually searching the database for

the desired entry.
d) A method to search the database by scanning a

UPC bar code.
e) A set of software timer synced with the microwave

timer.
f) An Android application GUI based on states and

activities.
g) Software to send information to the hardware via

USB.
3) An Arduino embedded system to control the hardware

system, comprising of:
a) An embedded interrupt system to recognize re-

ceived data from the serial connection.
b) Instructions to decode the instruction strings com-

ing from the Android application [1].
c) A method of re-connecting to the tablet if connec-

tion is lost.
d) Methods to control the external hardware and the

microwave itself.
4) A hardware system to control the microwave’s func-

tionality via replicating user button presses. Our system
replicates button presses via a set of hardware relays.

5) Hardware to control the plate spinning within the mi-
crowave.

6) Hardware to control airflow within the microwave and
prevent condensation.

7) A thermal camera to view the heating process within the
microwave.

C. General Project Overview

This multi-approach system helps bring the microwave into
the modern day. At its heart is the Android application, which
acts as the main user interface and is the centerpiece of the

2

Figure 1. Figure displaying the software/hardware communication.

implementation. Its primary behind-the-scenes function is that
it connects the microwave to a database containing informa-
tion about microwavable foods, making cooking foods more
predictable and reliable. Table I in the appendix shows the
structure of the database that we built. From the database, the
Android application separates out the necessary information
that needs to be displayed to the user and what needs to be
sent to the microwave. Via either of the ”search by name”
or ”search by UPC” activities shown in Figure 7, the user
can select the food to be cooked, see a picture of it and the
necessary cooking steps, and program the microwave. From
there, the application takes over, sending instructions to the
hardware to begin cooking, and it starts a timer to keep track
of the food’s cooking time in sync with the microwave. Finally,
once the food is cooked, the user can reset the application by
traversing back through the activities, and can enjoy their food.
More on this will be explained in further sections.

Our original aim for the project was to also include image
processing based on input from the thermal camera. Unfortu-
nately, the company with whom we were working was unable
to provide us with the necessary software development kit
on time, so we were unable to include the image processing
capabilities we originally planned for. As such, we had to
modify our original aims of the project and omit the image
processing. We will explain more of this idea in the further
implementation section.

Once the information is parsed from the database, hard-
ware translates the information coming from the Android
into replicated button presses on the microwave. We did not
modify the existing microwave hardware controls in order
to preserve safety features, such as over-current protections,
already built into the microwave. The Arduino is connected to
the android application via a serial communication link over
USB. The instructions sent from the Android application are
then decoded by the Arduino as shown in Figure 11, coded into
button presses and sent to the relay board [1]. By leveraging

the flexible nature of the relay board, we also implemented
methods to control the microwave’s plate spinning, and added
an external fan for ventilation. The full map of how the
software and hardware systems interact is shown in Figure
1.

II. HARDWARE

With the overview of the project given, the following
sections will go over the steps that we took in creating our
prototype smart microwave, starting with understanding the
microwave itself.

Microwave Components

The first step in starting to understand where to start build-
ing our solution was to first understand how the microwave
worked in order to design a hardware harness to control the
microwave. As our prototype base, we bought a popular,
cheap, low end WestBend branded microwave. The basic
components of the microwave are shown in Figure 2, and
include all the basic active parts of a microwave:

• The magnetron - the component of the microwave that
converts an electrical source into the microwaves that heat
food.

• A transformer - There is a large transformer for the
magnetron alone that steps up the voltage massively in
order to convert project electrons into the microwave
enclosure. As the magnetron requires a DC power supply,
the transformer works in conjunction with a very large
capacitor (also shown) in order to maintain a steady DC
source. There is also a smaller transformer in the back of
the microwave which does a AC-DC conversion for the
controller board.

• The controller board and button panel- Located behind
the button panel of the microwave sits the microwave’s

3

controller board and supporting componentry. The but-
tons on the microwave front panel link directly to this
board, which does all the necessary work.

• Plate motor - Underneath the main enclosure is a mounted
motor that comes up through the bottom of the main en-
closure box and spins the interior food plate. In testing it,
we found the motor to be extremely well self-contained,
with the necessary support circuitry to handle start-up
current and torque.

• Fan - At the rear of the microwave component area is
a fan that helps to keep the power components from
overheating.

All the included active componentry was grounded to the
shell of the microwave, which in turn is grounded to the input
ground line.

Figure 2. Picture showing the basic components of a microwave.

Microcontroller and Button Decoding

The next task was to remove the protective components of
the microwave like the outer casing and the securing compo-
nents in order to access the microwave microcontroller and
button panel. Figure 2 above shows the interior componentry
area after we removed the outer casing. From there, we were
able to remove the microwave controller board from the front
button panel and identify the type of microcontroller being
used, a Sino Wealth SH69P26. This type of microcontroller is
purpose built for controlling microwaves and commonly found
in them. We were able to locate the datasheet, and in using
various testing methods we were able to create a button map
in order to control the microwave as if buttons were being
pressed by the user. We decided to keep the controller system

unmodified to keep safety systems on the controller board in
place.

The buttons are mapped out in a 4x6 matrix configuration,
which allows for the microcontroller to require fewer overall
pins. The button mapping is shown in Figure 3, which shows
that each individual button is mapped to exactly one output
and one input. When a button is pressed, it completes a circuit
on one of the input lines. To determine which of the buttons
on a particular output line is the one being pressed at a given
time, the controller sequentially outputs 5V on a single output
line at a time, and while applying power to that particular line
then polls the 6 input lines once per output cycle in order
to read which button, if any, is being pressed. The timing in
which the controller polls these lines ensures that only a single
button can be pressed at any given time as it can only read
one button at a time. Even if a user was able to somehow
press two buttons at the exact same moment, the sequential
reading of the buttons by the controller would guarantee that
only the first button read would latch. while a button is being
held down, no other buttons can be pressed.

Figure 3. The button matrix map. The top four lines are the output lines, the
bottom six are the input lines. The colors are our own, and show where rows
and columns meet to form a single button connection.

Arduino

The heart of our hardware build is an Arduino Uno embed-
ded system platform; it acts as the ”brain” of our hardware

4

implementation and decodes instructions from the Android
application side of the project [1]. We chose the Arduino since
all of the team members knew it well, and our implementation
was well within it’s range of capabilities. The individual
pin output mappings from the Arduino, where they go and
what they control, are documented in ”Button Matrix.txt”
[2]. Wiring the Arduino was one of the simpler aspects of
this project. We also included an RGB LED to indicate
communication health, this topic will be covered in more
length in the communications section. The next step was to
create a system that the Arduino could control in order to
replicate button presses and control the microcontroller.

Figure 4. The Arduino connection to the 16 relay board that we used to
control button presses.

Relay Board

In order to imitate button presses, we decided to use a relay
board with 16 multipurpose relays built in. We specifically
chose our relay board as it is easily controllable from an
embedded system such as an Arduino Uno, which all the
team members had substantial experience working with, which
made hardware programming and debugging substantially
easier. To map the relays onto the buttons, we arranged them
in the same row-column configuration that they are mapped in
the matrix. We did not implement matching relays for all the
buttons though, as we deemed some buttons like ”popcorn”,
”potato”, ”pizza”, etc. to be spurious and without project value.
The relay-to-button mappings are also given in the reference
file ”Button Matrix.txt” [2].Once the buttons were mapped
onto the relay board, we were then able to add two other
functional components via the relay board. First, we changed
the motor connection to run through a relay, which gave us
the ability to toggle plate rotation as we wished. Secondly,
we added a 12V Xbox fan connected through a relay to the
opposite side of the microwave in order to keep our extra
componentry cool and to prevent condensation buildup when
cooking food.

With the relay board wired up buttons (shown in Figure 5),
we were able to then create a test system where the Arduino
would decode input strings into button presses, and we were
able to start controlling the microwave and begin fleshing out
the rest of our system.

Figure 5. The Arduino and relay wired into the microwave controller board.

III. SOFTWARE

The overall diagram of how the software controls the
hardware and microwave is given in Figure 1. With the basic
design of how to control the microwave itself done, we were
able to design the Android application and the connections
between the application and the hardware.

The Food Information Database

The first link in our software chain is the remote database
that we are using to store information about food to be
cooked in the microwave. In selecting our database type, we
recognized that we needed to go with something lightweight
and flexible; our implementation did not require the use of a
fully fledged database. With that, we decided to go with an
H2 database engine, which fit all of our requirements. The
database is extremely lightweight, if not incredibly fast, and
flexible enough to hold our instruction strings and imaging
data. We installed our database on a team member’s personal
server. We then set up the database to be accessible from the
web address http://nocomment.sipnswirlutah.com:8082, from
which we could access it anywhere. The database followed
the structure found in Table I in the appendix, with columns
to store various instruction information. The component that
slowed our database down the most was the decision to include
pictures, which will be explained further in the application
section. We felt that some form of imagery was needed in our
application, so we felt that the slowdown was justified. Some
examples of our database entries are found in Figure 6

Communicating via UART over USB

Because our system made use of two processing centers,
one in the Android device and one in the Arduino, we needed
a method of communication between the two. At the very
least, we needed a uni-directional system that would pass data
from the Android to the Arduino in order to send instructions
strings for controlling the microwave. This turned out to be a
significantly challenging portions of the project. We attempted

5

Figure 6. Example food information rows in our database.

various methods of communication, none of which save the
final method worked well. In particular, we felt that we had
found a probable solution in transferring data over an audio
connection by leveraging our Android device’s audio port. We
were able to obtain potential partial audio data transfer files for
both Android and Arduino, with a testing application. [3] This
would have had the extra benefit of allowing us to have the
USB port on the device left free for device charging or other
purposes. Ultimately though we found that the audio transfer
was unusable. For various reasons it had difficulty passing data
reliably and was overall a poor implementation method.

Instead, we chose to go with an online library we found by
Manuel Di Cerbo from Neuxs-Computing GmbH, Switzerland
[4]. This library gave us the ability to run UART serial
communication out over a USB connection directly between
the Android device and the Arduino. Though it meant that
we could not use the USB port for other communications
while running our application without an extensive rewrite
of the data transfer methods, it allowed us to spend time on
other crucial parts of the project without having to worry that
our communications would drop out or that we would have
incorrect data packets being transferred between devices. The
library also only provides unidirectional communication from
the Android tablet to the Arduino, but this was sufficient for
our present needs.

The library came in two parts. The first, on the Android
side, set up the connection classes necessary for the Android
to be able to connect to and use the USB port, as well as
giving the necessary data packet functions that we would use
to send information. On the Arduino side, the library gave
an example Arduino file with the necessary port information
ready. Another key element of the library was how it helped us
use interrupt programming on the Arduino. The information
sent by the Android tablet is stored in memory by the Arduino,
and an interrupt is signaled anytime new data is retrieved. With
the interrupt working properly, we were able to retrieve the
instruction bytes in the form of strings.

A drawback of the library was that it only allowed for Uni-
directional communications. But otherwise it fulfilled all of

our requirements and worked extremely well.

Android Application

As the overall brains of the project, The general outline of
the activity map is given in Figure 7.

Figure 7. Android application state diagram and activity map. The back end
classes are utilities referenced in multiple activity states.

A major reason that we decided to go with an Android-based
user application was that it allowed our team to program our
application in Java for the program itself and XML for our
design layout, which was something that several members of
our team were proficient in. It also allowed us to make an
app that wasn’t platform specific; we were able to get our
application to work on several different Android devices with
the same results.

As an Android based program, our application was built
around activities. The activity map shown in Figure 7 is similar
to a state diagram for hardware, each state flows to the next
one according to the arrows. This likewise means that the the
map must be traversed in reverse in order to return to the
main activity, which is easily doable with the default back-
button functionality built into an Android OS. The activities’
functions are as follows:

• The Main Activity is the starting screen brought up when
the application first loads. It has three selections possible:
to search the populated food database list by food name,
to search the database by UPC scanning, or to enter a
manual control mode. When the application first loads it
begins to populate the food data from our remote database
in the background.

• Manual Microwave Control allows the user to control the
microwave as if they were pressing the buttons on front
of the microwave itself. In this mode, any instructions
sent to the microwave are sent as single instructions, just
as a user would press a single button at a time on the
microwave in order to program it. This activity contains

6

a software timer that is closely synced to the microwave
in order to show the same cooking time on both displays,
and to indicate food is done cooking when the microwave
shuts off.

• Search by Name allows the user to input search param-
eters in a text field. The application will then search
through its list of populated food items to find potential
matches. For example, a search of ”burrito” will return all
instances of food names containing the word ”burrito”, as
well as food brands that may include that information as
well. The information returned by this activity then feeds
into the Search Results activity.

• Search by UPC code allows the user to scan a bar code
by using the Android device camera, and then searching
the populated list for a match. This functionality was
achieved by leveraging a third-party software library
called ZXing [5]. This library has the ability to scan
any of the common UPC codes, as well as QR codes.
It does this by image recognition and processing. There
is a built-in function that allows an activity to be started
for a result, which is the way that we received the data
back from the scan. Like Search by Name, this activity
sends its result to the Search results activity. An example
of the UPC scanning stage is shown in Figure 8.

Figure 8. The UPC scanning stage of Search by UPC.

• After finding foods, the application then moves into the
Search Results activity. From here, the user may select
whichever food they wish to cook from this list, which
then invokes the instruction activity. If no suitable result
is found by the user, they may use the Android back
button to go back to the prior search stage.

• The Instruction Activity creates a page display of the
food that the user has selected, including a picture (if
it exists in the database) and the cooking instructions.
If the Instruction Activity is entered via the Microwave
Running Activity, then it automatically enters the Enjoy
Activity.

• Once the user selects ”Select” from the Instruc-
tion activity, the application will then go into the

Figure 9. The returned list of food items to select from available on the
Search Results activity.

Figure 10. The screen showing the user food information and the automated
cooking instructions.

Microwave Running Activity. On entering this activity,
the application automatically sends instructions over the
UART connection to the Arduino to program the mi-
crowave according to the specifications retrieved from the
database. On selecting ”Start”, the microwave will then
send a signal to the Arduino to start the microwave and a
software timer will initiate that matches the timer on the
microwave. Similar to the timer in the Manual Microwave
Control activity, the timer is synced to closely match the
microwave itself. On completion of the running activity,
control is returned to the parent Instruction Activity.

• The Enjoy Activity is entered after the microwave run-
ning activity completes. It is simply there to let the user
know their food is cooked, or to add an additional 30
seconds if necessary.

In addition to the activity states, there are several special
classes that our team created that are passed between activities:

7

Figure 11. The state diagram of how the Arduino decodes instructions from the application.

• The Food Item class contains information pulled from the
database and is passed between activities to synchronize
what food is being cooked, along with its pertinent
information.

• The Local Database is the local copy of the database
that is referenced when running the application. All
information that is pulled in from the remote database
is saved into this local copy, and it is this copy that
searching is performed on.

• The USB Singleton is a very important core class to
our entire project. The code (by Manuel Di Cerbo [4])
that we utilized is viewable on our GitHub repository.
It is instantiated only once and referenced by multiple
activites, and is the class that passes information from
the local database to the Arduino, abstracting away all
the otherwise cumbersome USB protocols. Because this
class is so well abstracted, it allowed us to focus more
on the implementation of our project and much less on
the tedious low-level programming required when dealing
with implementing UART-over-USB connections.

Instruction Encodings

As we created our own application of software and hardware
in controlling the microwave, it became necessary for us to
create our own instruction set for sending instructions to the
microwave. To this purpose, we repurposed and added to a
set of encodings that are stored in the database and passed on
by the Android application to Arduino in string format. The
Arduino then has the job of interpreting those instructions into
button presses via a series of case statements in code [1]. It was
important that our instruction strings and the instruction order
match the actual capabilities of the microwave. Some functions
were not available in all modes, such as power modifications
at inappropriate times. Thus we had to make sure that our
casing structure was correct in all circumstances. The encoding
interpretations are given below and shown in the Figure 11
diagram.

• ’b’ - this character in a string indicates a single button
press. In a string, another single character must immedi-
ately follow.

– ’0’ - ’9’ - A numeric character indicates that the
corresponding number button is to be pressed.

– ’t’ - Press the time cook button.

– ’c’ - Press the stop/cancel button.
– ’p’ - press the power button
– ’s’ - press the start button.

• ’t’ - Indicates that the time cook button is to be pressed.
This must be followed by any number of numeric ’0’-’9’
characters indicating the number of seconds to cook the
food. A non-numeric character acts as the break between
the number of seconds to cook and the next instruction.

• ’p’ - Indicates that the power button is to be pressed,
controlling the cooking power of the microwave. This
can be achieved in one of two ways:

– ’i’ - If an ’i’ is received, it must then be followed by
numeric characters ’0’ - ’1”0’, indicating the power
level be set between 0 and 10. This corresponds to
the power button being pressed, and then the desired
power level being set.

– ’l’ - The ’l’ character indicates that the power level
be set to a specific pre-determined value according
to the next character received:
∗ ’h’ - ”High”, set to power level 10.
∗ ’m’ - ”Medium”, set to power level 7.
∗ ’l’ - ”Low”, set to power level 5.
∗ ’d’ - ”Defrost”, set to power level 3.
∗ ’z’ - ”Zero”, set to power level 0.

• ’s’ - Indicates that the microwave start button should be
pressed and that the cooling fan should be turned on.

• ’S’ - Indicates that the stop/cancel button should be
pressed and the cooling fan should be turned off.

• ’m’ - Toggles the running of the plate motor.
• ’˜’ - This ”heartbeat” character is generated and sent once

every 1/10th of a second by the Android program to the
Arduino. It indicates that the UART connection between
the two devices is still healthy.

• ’f’ - Indicates the end of an instruction string, and that
the Arduino needs to start processing.

Arduino Decoding

The Android sends an instruction string to the Arduino
one byte at a time, where it is stored in the UDR0 register.
Whenever that register is changed, the Arduino processor
generates an interrupt that indicates that there is new data
in that register that needs to be processed immediately. The
byte from that register is then read into a first-in-first-out

8

(FIFO) buffer. When the Android application is done sending
an instruction string, it sends an ’f’ character, indicating that
the instruction string is complete. The Arduino then sets a
flag in its interrupt method that the main process should start
processing the string and translating it into relay switching and
button presses.

The Arduino translates the button presses as described above
in the encodings section, and in Figure 11.

Of particular note is the heartbeat character. It is not ever
translated into a message string, and only indicates that the
connection between the two devices is still valid. The Arduino
instantiates a timer such that it keeps track of the time received
between these pulses. Whenever this character is received,
the Arduino will create a green pulse on the RGB LED to
indicate that the connection is working correctly. It then resets
the timer start counting up again. Should the connection be
broken and the heartbeat lost, the timer will continue to count
up without being reset. If a total of five seconds pass without
the connection being restored, the Arduino will set the USB to
light up red, indicating visually that the connection has been
lost. If a heartbeat is received again, it will begin to flash
green again. This functionality helped us as the designers and
testers to keep track of when the connection was active and
when it wasn’t, and helped us immensely with debugging our
communications setup.

IV. CHALLENGES

As with any major project, it was fraught with plenty of
challenges for us to overcome.

As detailed above, we had to overcome problems in trying
to implement a robust communications system. As we needed
to separate the hardware and software to the extent we did,
this became an important aspect of our project in making
everything in our project cohesive. As described earlier, we
ran into major difficulties in trying to get various forms of
communication protocols to work, the most notable being
the failed audio transfer [3]. We also considered wifi and
bluetooth as methods of communication, but we found that
those protocols were too difficult and time-intensive for our
implementation. In the end, we are grateful for the De Cerbo’s
UART over USB library that performed exactly the function
that we needed.

The application software timers in particular proved to be an
persistent problem, as were unable to get decent precision in
matching the microwave timers on the application. We solved
this by increasing the precision of our timers to a millisecond
scale. Our timers are still not synced perfectly, as the way that
the microwave handles timers is on a hardware level, and is
not something that we can replicate with our software timers.
Additionally, consecutive changes to cooking times while the
two timers are running cause discrepancies, as the microwave
hardware timers both update instantaneously and do a bit-level
addition to the timers as they are. Our software timers require
re-instantiations in order to make changes. While a millisecond
timer does much to mitigate our earlier problems, they are not
perfect.

Hardware challenges were thankfully pretty limited, our
soldering and wiring worked extremely well. The problems

we did have with hardware stemmed from USB connections
being faulty. Specifically on our demo day, Murphy’s law
decided to strike by making connecting our application to the
hardware flaky due to worn out connectors. Other than that,
our hardware build was remarkably sound.

Finally, we had plans for implementing a thermal camera
interface with our application. One of the stretch goals for
the microwave was to include a thermal camera that would
improve the functionality of our microwave significantly.

Figure 12. The Seek Thermal camera mounted on the viewing hole in the
microwave.

We bought a Seek Thermal camera that was compatible with
our Android device, and mounted it on top of a viewing hole in
the microwave enclosure. We made sure that the viewing hole
was consistent with the other ventilation holes in the enclosure,
ensuring that no microwaves would escape. We were able to
see food heating within the microwave, and it opened up a
number of possible features for our application. Specifically,
we were interested in performing analyses on the thermal
information pulled from the camera that would have in turn
allowed us to cook food in a better way. These improvements
will be described in the Future Improvements section.

What hindered our ability to make the thermal camera useful
was that we were not able to get the software development kit
from Seek itself. The kit was supposed to have had a delivery
time towards the beginning of our project, and it would
have allowed us plenty of time to incorporate information
processing on the data. As of the writing of this paper, that kit
is still in development and has not been delivered many months
late, and therefore we were not able to incorporate it into
our project. We did attempt to write a USB driver to retrieve
information from the camera, but with very limited success.
In the end, we decided to abandon the image processing
functionality of the project in favor of making the rest of the
application as well polished as we could.

V. FUTURE IMPROVEMENTS

We fully acknowledge that our project is in essence only a
prototype build. As we worked on the project, we realized that

9

there were myriad other improvements that could be made to
make our project better overall and that would move towards
being more of a consumer type product.

Database Extension

The database needs to be extended so that it can include mi-
crowave models, backups of user-specific database alterations,
etc. This will allow for product-specific cooking instructions
and even allow for small changes like altitude correction, if
necessary.

Database Persistence

Currently, the entire database is dumped onto the device
every time that the app is opened. Since the image files are
also stored in the database, this download can take quite a long
while. We would like to implement a download scheme that
allows for an initial dump of data when the app is installed, but
then keeps the relevant data on the device until that particular
entry is updated on the database.

Database Web Form

We would like to create a web form that can be accessed
by registered companies so that their cooking instructions can
be easily entered and updated.

USB Permission Memory Persistence

We were unable to get the Android tablet to recognize the
Arduino bridge as the same USB device each time it was
connected, so permission to access the device was requested
each time we connected the bridge. We would like to solve
this issue so that the permission need only be requested once.

Bi-directional Communication

Bi-directional communication would allow data from the
Arduino to be sent back to the tablet. This would allow us
to know information about the state of the microwave itself,
including whether the door was open, if there was a disconnect
with the bridge, and data that we can gather through sensors
such as temperature, humidity, smoke, etc.

Product-Specific Microcontroller

Much of the data transfer complexity of the project could be
bypassed if a microcontroller were be built into the microwave
from the beginning. That way the microwave itself is running
code similar to the Arudino code that we have written and
wouldn’t require USB connections or the like.

Self-Contained System

We would like to permanently mount the tablet onto the
microwave in future editions so that the system is self-
contained. This will decrease the change of damage to the
system.

Solving the Hot Spot Problem

The SDK for the Seek Thermal camera was never delivered,
so we had no way to extract images or thermal data from the
thermal camera. We are interested in integrating this in the
future. We will do data analysis on the thermal data or on the
image itself in order to more accurately heat food. This will
allow for even better food quality because the cold spots in
the food could be turned so that they are directly position in
the one of the microwave’s hot spots, or the opposite for a
portion of the food that has gotten too warm.

Integration Into Other Appliances

This technology could be altered to work in other appliances
such as ovens, toaster ovens, crock pots, or even stovetops.
With manufacturer-specific cooking instructions for food, the
information gathered would allow a change in heat flow in the
oven, for example, to heat a colder spot on the Thanksgiving
turkey. Additional safety features could also be added such
as alerting the cook via alarm or text message if smoke is
detected in the oven.

VI. CONCLUSION AND LESSONS LEARNED

The project came together well and turned out even better
than originally planned as the design morphed along the way.
The lack of the SDK for the thermal camera didn’t allow us to
take this as far as we would have liked, but we will continue
this work in the future. We think that the product delivered is
a very able prototype and that, with the future changes listed
above, could become a viable product to take to market.

In conclusion, our group learned a lot from this project,
using the various technologies and methods that we’ve learned
as students to make a prototype consumer product. We fully
believe that the our microwave project showcases all that
we’ve learned as students and that it fulfills the requirements
necessary of a good senior project.

REFERENCES

[1] [Online]. Available: https://github.com/ndbroadbent/raspberry picrowave
[2] [Online]. Available: https://github.com/jwattsphilly/CE-Senior-Project
[3] [Online]. Available: http://www.instructables.com/id/Transmitting-data-

from-Android-to-Arduino-through-/?ALLSTEPS
[4] [Online]. Available: http://android.serverbox.ch/?author=1&paged=2
[5] [Online]. Available: https://github.com/journeyapps/zxing-android-

embedded

VII. APPENDIX

List of Reference Files

• Audio Data Transfer: This method of communication is
not used in our project anymore, but was implemented in
earlier stages.

– Android Code: Contains Android code for sending
data over audio.

– Arduino Code: Contains Arduino code for receiving
data over audio.

• Construction Images: Contains images of project con-
struction.

10

• Microwave Relay: Contains final Arduino code for our
project.

• Seek PC Integration: Contains Android code for commu-
nicating with the Seek Thermal Camera. We were unable
to get this to work, so it is not currently part of our final
project.

• Smart Thermal Microwave: Contains all Android code
for our Smart Microwave app.

• Videos: Contains videos demonstrating our project.
• Other Files:

– Button Matrix.txt: Describes how to interpret the
button matrix (found in Construction Images/Button
Matrix Image.png). Also contains information on
Arduino pin-outs and relay usage.

– Survey Stats.xlsx: Shows preliminary survey results
in tabular and graphical form.

– Thermal Microwave Presentation.pdf: Final presen-
tation slides from demo day.

– Weekly Log.txt: Weekly log of the project starting
March 29th, 2015.

Timeline of Events

See Weekly Log.txt in the resource files for information
about project event flow.

Responses to User Survey

The user survey results can be viewed in their entirety in
Survey Stats.xlsx in our resource files, including graphs of
results. Some of the changes recommended by the survey
were implemented before the final demo day and helped us
focus our efforts at the end of the project. The results were
all measured on a scale of 1-10, with 1 being the worst and
10 being the best. The condensed results were as follows:

• Functionality of Device: 9.03
• Satisfaction with Cooking Results: 8.96
• User Interface: 9.23
• Overall Satisfaction: 9.08
• Would Want for Oneself: 8.08

Overall, the response was positive and the participants were
excited by the idea of owning one of these devices.

Parts List

• West Bend Microwave
• LG GPad 7.0 LTE Tablet running CyanogenMod
• Arduino Uno R3
• Sainsmart 16-relay Relay Board
• Seek Thermal Camera
• Acrylic for Display Case
• 12v Xbox 360 Fan
• Wire, LEDs, cables, etc.

11

Table I:

DATABASE STRUCTURE

ID Number Food Type Brand Name UPC Code Instructions Image

Info Row[0]

.

.

.

Info Row[x]

Figure 13. The members of Team Smart Microwave are, from left to right, James Watts, Darin Stoker, and Stuart Johnsen.

