ECE 3992 COMPUTER ENGINEERING SENIOR THESIS 26, DECEMBER 2020

Virtual Reality Teleoperation Robot

Alexis Koopmann, Kressa Fox, Phillip Raich, Jenna Webster

Abstract—The ability to access and interact virtually in remote,
and sometimes dangerous, environments have become highly
applicable in many industries. Our senior project team developed
a virtual reality device to increase the accessibility of these
environments. The system our team created utilizes a wireless
controller to operate a robotic car and send visual feedback to
a virtual reality headset through a camera stream. This system
provided a safe and entertaining way for an operator to access
environments remotely.

Index Terms—Computer Engineering, Robotics, Teleoperation,
Virtual Reality, etc.

I. INTRODUCTION

HERE are many places where people need to reach
but cannot access due to physical limitations or safety
concerns. These environments range from the depths of the
sea to the vast expanse of space. There are countless areas
that cannot support human life or are physically inaccessible
to humans that have yet to be explored. Having a way to access
these spaces, with enough information to successfully navigate
them without being physically present is a valuable resource.
Many modern navigation systems haven’t caught up with the
rapid development of new technology. Some still rely on low-
level machine code commands, difficult user interfaces, and
poorly designed displays as a means of control. One example
of where updated control systems would be useful is in nuclear
reactors. “Today’s nuclear 1&C maintenance departments are
faced with outdated electronics, increased failure rates, and
tight plant operating budget” [1]. As Virtual Reality becomes
increasingly more cost effective, integrating Virtual Reality
into these systems could reduce human error, increase operator
engagement, and update back-end code frameworks to a more
modern language (C#). Sites like Chernobyl already use 3D
mapping with teleoperated robots in order to navigate inhos-
pitable environments. When accessing potentially hazardous
environments, human error or lack of engagement can result
in dangerous consequences. The system we are creating will
provide a high quality visual and control interface that benefits
users. Instead of interfacing with an environment through low-
level machine code, our systems’ users can see the space visu-
ally, and interact with it via a game controller. Virtual reality
(VR) interfaces provide a massive amount of information to
users, minimize human error, increase efficiency, and reduce
stress when operating machinery.

Our project will consist of a small vehicle that will be linked
to a Virtual Reality Display headset. The robot will operate
like a remote-control car. For our project, we mixed the word
car and the acronym VR to create the projects’ name “CarVr”.
This robot will be able to move, provide camera input, and
potentially interact with an inaccessible environment.

The main objective of the CarVr system is to demonstrate
the operation of a mobile vehicle that is located in a physically

different area from that of the user while using augmented
reality to maintain a sense of presence with the vehicle for
that user. The augmented reality (AR) is a result of combining
the VR display with the real world camera input. When the
user puts on the headset and starts the application then they
will see a camera feed from the vehicle. The user can then use
the remote control to instruct the robot where to go, moving
based on the provided camera input. The user will be able to
use the device easily and enjoy the experience. If time permits,
then the VR space will have a display resembling a car cockpit
surrounding the camera feed so that the application feels more
realistic. Extra functionality may include a NERF dart turret
to allow the user to interact with objects in the environment.
The NERF turret however is not vital to the success of the
project and will be implemented secondarily.

The complete CarVr system can be split into two significant
connections: camera to VR, and controller to the car. These
connections make up the core functionality of the project and
are where most of the effort will be centered. They differ from
similar VR integration projects by the use of a mobile car and
camera system. Since the purpose of the CarVr system is to
allow the user to observe the world as if they were in the car, a
camera will be mounted upon the car that feeds video into the
VR headset. Utilizing the camera feed, the user of the CarVr
can control the direction of the car with an external controller
to explore the environment around them.

When the project is completed and demoed successfully, all
materials, code, designs, and implementation will be posted
open-source on GitHub. By creating and sharing our project
for anyone to replicate, we are hoping to inspire more creators
to start making new and different types of VR systems,
integrated with unique hardware. If one can hook a VR envi-
ronment to a mobile car, the knowledge can be extrapolated
to work with other hardware. Adding to the knowledge pool
for this growing industry will benefit more than just the
research community. Our team aimed to demonstrate a proof
of concept, highlighting that these types of systems can be
created and that they provide unique functionality. Specifically,
our team wanted to solve this accessibility problem in a safe
and engaging way by combining VR and robotics. On a
larger scale, we are setting up a framework for other groups
to develop similar cross-discipline devices for society. To
accomplish these goals, our team is designing a system that
reduces human error, is visually engaging, and provides safe
access to dangerous environments with VR.

II. BACKGROUND

Groups that have started combining VR with teleoperation
systems have seen positive results including increasing opera-
tors’ spatial awareness to decreasing operator stress. A project

ECE 3992 COMPUTER ENGINEERING SENIOR THESIS 26, DECEMBER 2020

done by graduate engineers at Gifu University combined VR
and a construction robot. They then monitored the operators’
task efficiency and engagement with various displays. It was
confirmed that the VR display far surpassed the conventional
display in utility. Using VR to operate the robot was easier to
operate, safer, and reduced stress on the operator [2].

MIT’s Computer Science and Intelligence Lab (CSAIL)
recently linked VR and a manufacturing robot. MIT found
that the unusual design-led to participants having a higher
success rate with the VR system than with more high-end
expensive systems currently on the market. VR hardware
control systems could provide a cost-effective alternative for
companies. Alongside this, video game players were asked to
test the MIT device. They found the gamers were quickly able
to learn the basics of operating the manufacturing robot. VR
displays could lower the barrier of entry into manufacturing
jobs for individuals who play games [3]. While skeptical of
the original design, CSAIL ended up declaring the project
a success. Our team will be replicating a similar system by
integrating a VR display into our “task system”. Our tasks will
differ from MIT’s research, involving moving a mobile robot
instead of stacking Legos.

Another example of combining VR and hardware systems
comes from Brown University. They developed a software
project that allowed users to control robots with everyday VR
hardware. The system links a research Baxter robot with an
HTC Vive headset. Tasked with stacking 16 different sized
cups, operators found that the VR interface was more fun and
easier than the keyboard interface. Not only did they stack the
cups faster using the VR interface, but most participants were
smiling and enjoying their experience [4]. Making sure users
are enjoying themselves is important to efficient and easy task
completion. Our design will again, incorporate similar display
ideas to harness these positive effects.

To utilize VR, we needed a development program to make
a VR environment. A baseline requirement for CarVr is for
the video feed from the vehicle to be live-streamed to the VR
headset. Other projects, such as the mobile robot produced by
students at Dong-A University, have found novel solutions to
providing live camera images to a VR headset [5]. However,
these solutions did not allow for a virtual environment to be
built up around the camera feed, or any extensible integration
like Augmented Reality. Our project aims to extensible and
adaptable, as a proof of concept project should be something
that can be built upon. Brown’s free software will not work
with our project, as it can only operate with Baxter research
robots. Two other major software programs exist for VR
development: Unreal Engine and Unity. Unreal Engine is a VR
software development tool better suited for game development
than hardware interfaces. Unity has more options for real-
world hardware interfacing, specifically integrating the camera
views needed for the CarVr system. Based on this research,
we decided to use Unity for CarVr.

A unique aspect of CarVr comes from the specific hardware
design of integrating a mobile vehicle and camera system.
The mobile vehicle will resemble a mars rover, with a camera
fixture, tank tracks, and a box-type design. This is created
to mimic the types of devices often found in dangerous and

inhospitable environments, like the rovers used by NASA to
explore space. Our rover type of design will provide more
stability and functionality to the vehicle. Five key pieces of
hardware equipment of the CarVr are the controller, camera,
VR headset, the motorized vehicle to be controlled, and a
single-board computer to control the vehicle. The code for
communicating instructions from controller to car will be
directly implemented on a computer system added to the car.

The car control system will be developed using a Raspberry
Pi 4 and Python scripts. This setup was selected due to its large
documentation support and its open availability. Many versions
of Raspberry Pi operating systems are available; however, this
project will move forward using the latest officially supported
version Rasbian [6]. Raspberry Pi has many integration capa-
bilities, and offers interfaces with many embedded systems,
such as cameras, Bluetooth modules, haptic feedback devices,
and more. We hope by building this new system, it will provide
the operator with the benefits of the VR display, with the added
functionality of a mobility robot. This will provide insight
into the benefits VR integration systems provide in a more
accessibility focused application.

III. RESULTS
A. Implementation Overview

This implementation of the project was split into the fol-
lowing sections: the control system, the virtual reality system,
and the locomotion system. These sections were implemented
and debugged independently from each other, then integration
testing and implementation were performed on the system as
a whole. A simple block diagram can be seen in Fig. 1. How
each of these sections was implemented will be explained in
more detail in the following sections.

User

Controller VR Headset
Provides
Informs car location
how to move' Physically Connected visual

Car Camera

Fig. 1. A general overview of the CarVr system and connections.

A Raspberry Pi 4 is the primary controller of the system.
Located inside the car, it handles a majority of the connection
logic. The Raspberry Pi 4 compiles the camera feed, and then
streams the feed to the internet for the virtual reality system
to interpret. It also handles interpreting Bluetooth signals from
the controller that direct the cars’ motors. As a result of the Pi
being a primary connection in all the system components, the
board is where most of the debugging took place. A more

ECE 3992 COMPUTER ENGINEERING SENIOR THESIS 26, DECEMBER 2020

detailed diagram of the CarVr system is shown in Fig. 2.
Critical data flows are shown by arrow colors: a green arrow
flow indicates the data that provides video feedback to the
user, while the orange arrows represent the data flow from the
user to vehicle motors.

CarVR System Overview

Laptop Running
VR Program

Rasbperry Pi 4 Controller

\

\

1

T

\

T |
\

Motor \
\

\

\

\

\

\

\

|
|
|
|
|
|
|
I Controllers
|
|
|
|
|
|

r 3

Pi Camera l

Motors

User VR Headset

Car Hardware

Fig. 2. A Specific Overview of the CarVr System and Connections

B. Required Resources

A complete list of all components has been noted in the
references [7]. The resources used included an Oculus Quest
2 headset, a Raspberry Pi 4, a PS4 controller, a Raspberry
Pi camera, VESC motor controllers, brushless motors, and
various smaller electronic and 3D printed components. Our
team had access to a 3D printer, soldering station, and a
welder. These tools were crucial to the development, but
substitutions can be made. The Oculus Quest 2 headset was
chosen based on availability during the COVID-19 pandemic.

C. Camera to VR System

The camera to VR system is a crucial component of the
project as it informs the user how to control the car. An image
of the VR device we used for this system can be seen in Fig. 3.

Fig. 3. Oculus Quest 2 Headset [8]

This component required a Raspberry Pi compatible camera
and an open-source Python camera script from documentation

at “rasbperrypi.org”. The Raspberry Pi is run on Raspberrian
OS and configured with an interface to facilitate the camera.
This script sets up a server with the Raspberry PI IP address
to send bytes from the Pi to a URL. From this setup, the
Raspberry Pi produces a live, low lag, MJPEG stream that can
be viewed in any browser with the corresponding IP address.
This IP address is then inserted into the VR system using a
C# Unity script. Linking real-time web streams remotely is
not well documented. To address this, our team had to take an
existing script from 2015, update it to be functional in Unity
2018, and trim unnecessary functionality. If reproducing this
project, it is highly recommended to use the script provided in
[9] and build upon it as needed. This MJPEG processing script
handles sending and receiving HTTP requests and responses,
as well as processes bytes coming in from the HTTP buffer.
The MJPEG processing script interacts with a texture script,
that works with Unity to display the bytes in a usable way
in the VR environment. For the project to run, we setup the
Oculus plugins on Unity. The Unity scene is comprised of a
viewpoint, an empty room around a viewpoint, and limited
virtual mobility inside the space. A screenshot of the scene
can be seen in Fig. 4. In the scene, there is what appears to be
a large screen to the viewer. There is also a camera icon which
represents the users’ field of view. Here the user is quite small
in comparison to the screen size.

Fig. 4. Unity Scene Snapshot

The large screen size reduces the potential for nausea in the
project. This setup also increases the novelty of driving a small
car, as the user feels that they are also small. Both components
were tested together until a live video stream could be seen
in VR by running the camera python script at the same time
as the Unity scene. A screenshot of the Unity scene running
a camera feed can be seen in Fig. 5. Any camera stream can
be used to test that the Unity environment is functional. The
script used in testing pictured below is from Turkey [10].

Fig. 5. Test Screenshot

ECE 3992 COMPUTER ENGINEERING SENIOR THESIS 26, DECEMBER 2020

Then the system was tested by running that Unity program
on the Oculus Quest 2 headset. To set this test up, an Oculus
Link cable is connected from the laptop to the Oculus Quest 2.
Then the Unity project is run, and the resulting experience is
displayed in VR. If the system is functional, a camera stream is
visible in VR. These integration tests are highly recommended
before continuing in development. Once complete, the baseline
functionality of the VR environment is complete. The project
can successfully provide a space for the user to view the
camera feed, and be immersed. Other components can now
be integrated into the camera and VR system.

D. Control Software

The control system is responsible for the speed and direction
of the vehicle. This system is composed of the PS4 controller,
Raspberry Pi, ESCs, motors, and a few signal converters. The
control software of the car is a Python script, which runs
on the Raspberry Pi. To control the speed of the system, the
script creates a Bluetooth linking shell that interprets the PS4
controller input and determines the output signal for the motor
controller.

For input, we use a PS4 controller. Rather than creating
custom controllers, we pivoted to integrating existing wireless
controllers instead. This choice not only made the project
more accessible to the development community but saved a
significant amount of development time as well. At first, we
planned to connect the PS4 controller via a WiFi connection.
This deliverable was pivoted to Bluetooth rather than WiFi
as a result of system restrictions and lack of documentation.
For the Bluetooth implementation, the script uses a Linux
kernel Joystick API [11], which re-structures Bluetooth input
devices as Joystick devices. Each time input on the controller
is triggered (pressing a button, moving a joystick, etc.), an
event structure is created and saved in an input stream. The
project uses this API with pyPS4Controller [12], a lightweight
module that reads the input stream and segments out events
as they occur. This module also handles disconnection errors
that report when a controller is offline. To make the connection
process smoother, our team developed a single script file to
link controllers and the Raspberry Pi, which facilitate a more
streamlined startup process.

The output of the Python script associates the input variables
from the PS4 controller with output signals that are used to
control the speed of the motors. The output signal is a PWM
(pulse width modulation) signal. The PWM signal outputs up
to 35 different duty cycles, which defines 35 different speeds.
The higher the joystick is pushed the higher the output duty
cycle, which results in a higher speed.

To confirm the script controller script operated correctly,
we analyzed the output logic of the Raspberry Pi 4 with
a Saleae Logic analyzer. To perform this test we connected
the logic analyzer to the output pin of the Raspberry Pi to
see the PWM output. We shifted the joystick of the PS4
controller upward to make sure the output on the Saleae Logic
analyzer shows that the duty-cycle becomes wider. This test is
highly recommended when reproducing the project, as it lets
a developer know if there is an issue with the software or the
hardware components of the control system.

E. Hardware

The vehicle uses a three wheel design with two independent
fixed motors for two wheel drive in the front, while a third
caster wheel for stability in the rear. Using independent
electronic speed controllers (ESCs) for each motor allowed
for each wheel to operated at different speed, making steering
possible without the need to pivot the wheels. The Bluetooth
controller primarily uses the Y-Axis of the joysticks for throttle
input. The left joystick position determines the left wheel’s
speed and the right joystick determines the right wheel’s speed.
This is a design commonly found in riding lawn mowers and
works well once the operator has experience controlling such
a system. An image of the finished vehicle can be observed
in Fig. 6.

Fig. 6. Vehicle Exterior

The chassis is primarily made from plastic components.
This decision was made after initial testing using a steel
chassis proved to cause issues with the motors demagnetising
internally. While an aluminum chassis could be used, the
current plastic version fits budget constraints. 3D printed
mounts are used to mount all components to the chassis and
can be found for download from [9].

The power system is primarily 22.2 volts and supplied from
two 6S LiPo batteries in parallel with a total capacity of 6600
mAh’s. The batteries are 50C rated, meaning that they can
supply enough current to power both 50 amp motors used. The
motors are rated for 190 kV’s and are usually used for electric
long boards. Using these motors allows us to be unconcerned
about vehicle weight as long as the chassis does not exceed
150 Ibs. The downside to the use of the motors is their need
for speed regulation. To obtain realistic control of the vehicle,
the ECSs are programmed using VESC software to limit the
motors rotational speed to 20000 rpm and have a max draw
of 35 amps each. A throttle curve is also implemented so that
users have fine control at slower speeds.

Connecting the Raspberry Pi to the ESCs requires additional
components in order to use a PWM waveform as the throttle

ECE 3992 COMPUTER ENGINEERING SENIOR THESIS 26, DECEMBER 2020

signal generated by the control software. The selected ESCs
are open source VESC 4.12 unites that allow for many types of
input and user defined parameters. On each ESC, an analog
signal is used in this case for the speed signal through the
use of a built in ADC. To obtain an analog signal from a
PWM signal, the use of a logical level shifter is needed to
bring the signal from the Pi from 3.3 volts to 5 volts and to
separate the Pi from sharing ground with 22.2 volt system.
The 5 volt PWM signal is connected to a PWM to Analog
converter (PAC) which translates the duty cycle given by the
Pi to an equivalent voltage. These converters translate 100
percent duty to 6 volts. The ADC in the ESCs except a max
of 3.3 volts so a voltage divider is needed between the PACs
and the ESCs to bring the max voltage down to 3 volts. A
system wiring diagram can be viewed in Fig. 7.

lr_‘
——

..............

vEse Motor
ter o |— A Right Right

A
Motor vEsc
[YS S N e

I
|_ a0 s
<
R3

Re
R2 > p1 56k 39k
39k sk

Fig. 7. System Wiring Schematic

Other components of the vehicle include a DC to DC
converter, a fan, a 5 volt battery, a circuit breaker, and a
Raspberry Pi specific camera. The DC to DC converter is used
to power components such as the fan and the level-shifter at
5 volts while using the 22.2 volt batteries as a source. The
cooling fan is needed in order to keep the Raspberry Pi from
shutting down from thermal issues. A 5 volt battery is used to
power the Raspberry Pi separately from the 22.2 volt system
allowing the Pi to be used without power being active to the
ESCs. An 80 amp circuit breaker is used to as the 22.2 volt
systems main power switch and to protect the power systems
wiring harness from melting. The camera is connected to the
Pi and used to provide the image for the VR feed. An image of
the inside of the vehicle where most components are housed
can be viewed in Fig. 8.

IV. CONCLUSION

The team was successfully able to assemble and use the
system as well as document our process. We were able to
demonstrate that not only can VR be used as a means of
controlling remote vehicle operation, but that these cross-
discipline systems are engaging to use as well. While some
small design details changed, for example, we did not use
tank tracks in the vehicle design, the majority of the imple-
mentation stayed consistent. Through a lot of time, effort,
and communication our team also demonstrated that these

Fig. 8. A Close Up of Vehicle Hardware

systems can be created remotely, with the only in-person
interaction necessary being the combination of separate system
components. The implication of this showed that while being
blocked on a particular technical aspect, a development team
could outsource certain pieces of the project, and still create
a functional system. It is also worth noting, in the new
remote requirements of COVID-19, developing components
separately was a safer as well. Our team demonstration acts as
a foundation for other developers, in areas where having more
engaging and interactive displays can benefit the completion
of certain remote tasks.

A. Lessons Learned

Virtual reality isn’t currently well supported for live camera
service, so this process was very time intensive to debug.
Motor and VESC integration is difficult, and had a lot of bugs
that were related to hardware and software problems. Creating
custom spaces in VR requires additional software, Blender,
which we had not accounted for in our original proposal.
Another incident our team learned was that automating the
system with a Bluetooth controller wasn’t possible during
the time period. Due to the way the Raspberry Pi boots, the
Bluetooth modules setup last during this process, and therefore
any script that relies on the Bluetooth modules will not execute
during boot. This prevented us from fully automating the
system. This system is currently only safe if the operator
is not moving around in space. Lagging WIFI speeds was
not something we predicted, and as a result, occasionally
the project performs poorly with slow WIFI speeds. This
can however be remedied with a hot spot. It is beneficial to
anyone reproducing this project, to take these into account
when designing a new system.

ECE 3992 COMPUTER ENGINEERING SENIOR THESIS 26, DECEMBER 2020

B. Next Steps

As proof of concept, our project is a good foundation for
the use of VR in teleoperation. Moving forward, our team
discovered that enabling the controller to work over a WIFI
connection, rather than Bluetooth, has promising implications.
If the vehicle could be controlled via WIFI our project can
be controlled anywhere in the world. This is a substantial
extension of the project’s functionality and could make the
system more applicable in a variety of environments. For
example, if large spaces need to be surveyed, that extend
beyond the immediate area or reach of Bluetooth, the range
would no longer be a limiting factor. Beyond this, additional
features, and Augmented Reality functionality would further
enhance the capabilities of the system in specialized use cases.
One example with the integration of Augmented Reality, is
in surveying various types of geological features. Augmented
Reality could inform a driver about what rocks, flora, and
fauna, might be detected on the camera feed. This can inform
user actions, and potentially, actions the vehicle can take
depending on the feedback. For example, if a special type
of rock is detected, in reaching out in VR to grab the
object, a corresponding robot arm could reach out in the
real world, to collect an object. This of course would need
more immersive camera streams, point cloud mapping, and
additional hardware, but the foundation of the project would
be the same. There are many ways this project can be adapted
and is highly usable in many industrial applications.

REFERENCES

[1] S. D. Sawyer, “Outdated controls instrumentation in nuclear power
plants - strategies for extending useful life,” in 2003 IEEE Nuclear
Science Symposium. Conference Record (IEEE Cat. No.O3CH37515),
vol. 5, 2003, pp. 3617-3621 Vol.5.

[2] H. Yamada, N. Tao, and Z. DingXuan, “Construction Tele-robot System
With Virtual Reality,” in 2008 IEEE Conference on Robotics, Automation
and Mechatronics, 11 2008, pp. 36-40.

[3] D. Etherington. (2017, 10) MIT’s remote control robot system puts
VR to work. [Online]. Available: https://techcrunch.com/2017/10/02/
mits-remote-control-robot-system- puts- vr-to- work/

[4] D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “ROS
Reality: A Virtual Reality Framework Using Consumer-Grade Hardware
for ROS-Enabled Robots,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018, pp. 1-9.

[5] Byeong-Hyeon Moon and Jae-Won Choi and Kun-Tak Jung and Dong-
Hyun Kim and Hyun-Jeong Song and Ki-Jong Gil and Jong-Wook
Kim, “Connecting motion control mobile robot and vr content,” in
2017 14th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), 2017, pp. 355-359.

[6] “Operating system images.” [Online]. Available: https://www.
raspberrypi.org/software/operating-systems/

[7] “Complete resource list.” [Online]. Avail-
able: https://uofutah.sharepoint.com/:x:/s/SeniorProject2020/
ERQggGwD3T1GgkDkzCylo9wBD1VwtkLc7yjZxsO7-zZx0A%=
yweOul

[8] K. Castle. (2020, 10) Oculus Quest 2 Review. [Online]. Available:
https://www.rockpapershotgun.com/2020/10/13/oculus-quest-2-review/

[9]1 “Project Site.” [Online]. Available: https://uofutah.sharepoint.com/sites/
SeniorProject2020

[10] “Telipito es karbantarto.” [Online]. Available: http://mail.bekescsaba.hu:
8080/mjpg/video.mjpg

[11] R. H. Espinosa, “Joystick API Documentation,” 8 1998. [Online]. Avail-
able: https://www.kernel.org/doc/Documentation/input/joystick-api.txt

[12] A. Spirin, “pyPS4Controller.” [Online]. Available: https://pypi.org/
project/pyPS4Controller/

