
Self-Evolving Machine Learning Algorithm for Stock Market
Trading Implemented on an FPGA

Front End Dashboard: https://quiet-wave-30496.herokuapp.com/admin/dashboard

D. Bidlack , M. Chaudhary, J. Porter, Z. Yarbrough

Abstract—The current wealth gap in the United States
is the some of the worst it has been in the last 50 years
and it is only widening. Our group was formed with
the desire to create opportunities for the average citizen
to gain abundance and close the wealth gap by using
machine learning to monitor the stock market and learn
which trading strategies are best to create wealth from
market inefficiencies. This information will then be given
to the average citizen for them to optimize their wealth
creation. A perceptron classifier on an ensemble boosted
decision tree machine learning algorithm was used to test
different trading strategies in a live market environment.
Traditionally, machine learning models use a back testing
approach to train the algorithm to predict what will
happen given new stimuli. The backtesting method has
been found not to work when applied to the stock market
prediction problem. Our algorithm is different because it
uses a real time feedback loop to train the model to predict
what trades to make instead of traditional backtesting.
When the average citizen has access to information that
allows them to build net worth at the same rate as the
rich, the wealth gap in the United States will be reduced.

I. INTRODUCTION

Machine learning is a subset of Artificial Intelligence
where a computer can dynamically re-evaluate the per-
formance of a task and make the necessary changes
to increase this performance. For example, Amazon
implements machine learning in its online store. When
a customer buys something, the program stores the
selection and finds products similar to advertise back to
the customer. When the customer makes an additional
purchase, the algorithm receives an additional data point
about the consumer. As this algorithm continues to
collect data about the consumer, it begins to be able
to predict future shopping actions. Examples being,
when the customer needs laundry detergent or if they
would be interested in a certain book. These types of
algorithms are implanted all over the world today and
are a huge part of our daily lives. Machine learning
is still in its development stage and it has difficulty

*University of Utah Department of Electrical and Computer Engi-
neering

solving the most complex of problems. Huge technology
companies are now taking educating their employees
with what artificial intelligence is capable of [1] so they
can tackle the complex problems. One of these hyper-
complex problems is public equity evaluation and trade
prediction. To discover the best methods for financial
trading, we tested multiple strategies with a machine
learning algorithm that utilized a perceptron classifier
on an ensemble boosted decision tree. This algorithm
was implemented using a field programmable gate ar-
ray (FPGA) to create a system that is fast enough to
make high frequency trades and to learn in real time
to discover what strategies are the best at any given
time. The machine learning algorithm discovered the
best strategies for financial trading, and reevaluated past
knowledge to incorporate this new information. With
this machine learning implementation built upon well
established financial strategies, our hope was to build
a machine learning algorithm to generate profits. After
much experimenting, and weeks running our algorithm,
we were unable to record any profits.

II. RELATED WORK

Not surprisingly, the idea of applying machine learn-
ing to try and guess stock prices isn’t novel. From
financial institutions to academics to hackers, there are
thousands of people trying to solve this problem. More
specifically, the idea of using Neural Networks to try
and beat Wall Street has been around since the 1980’s
[4]. This practice went out of popularity in the 1990’s
because the performance wasn’t as good as promised.
With recent advancements in technology and machine
learning abilities, Neural Networks are again gaining
popularity as a method for stock predictions. Now, many
investment strategies are using Machine Learning and
big data to analyze financial markets and make invest-
ment decisions. Whether their algorithms actually work
or not is hard to say since most groups are not releasing
their proprietary design or trading information. What
remains clear is that many organizations are attempting
to apply machine learning to trades in hopes of some
financial reward [4]. A research group from India tried

Fig. 1. Four Candle Hammer image explanation. Image from
https://tradingstrategyguides.com/technical-analysis-strategy/

applying a machine learning algorithm with only one
indicator for analysis. They used sentiment analysis from
twitter and desired to predict the values of stocks. [2]
They found that their model was successful 60% of the
time. A team from Turkey built a model that used 25
different indicators for analysis all applied to a neural
network which was only successful 50%-60% of the
time. [3] What these two have in common is the fact
that they store and save their data. Our theory is that the
longer you hold data the less useful it becomes. In some
cases, this data could even be harmful. For example, If a
company is the most popular on social media for years
but are suddenly hated. These stored models will still
see the company as positive and might buy stocks as
the price tanks. Although machine learning is far from
perfect, the fact that private groups won’t release their
findings tells us that there is positive progress in this
field that is worth pursuing.

III. TRADING STRATEGY

We have focused our research on five well known
investment strategies: Relative Strength Index, Twitter
Feed Sentiment, Bollinger Bands, Four Candle Ham-
mer, and company news sentiment. Each of these five
strategies have all been tested and proven in the market,
but using these strategies together has not been proven
before.

Relative Strength Index The Relative Strength In-
dex or RSI is a financial instrument used to measure
the strength of price changes over a time period. It
measures if a stock or financial asset is overbought
or oversold. Supply and demand rule the price of a
stock. Overbought means that the financial asset is due
for a price decrease due to the demand of purchasing
decreasing at the current price range. Oversold means
that the relative supply is being depleted and the demand
at the price range should start to rise. The RSI of
a stock generally oscillates up and down reaching a
high of 100% (completely overbought) to a low of 0%

Fig. 2. RSI Example. Image from
https://www.tradingview.com/chart/?symbol=NASDAQ%3ATSLA

(completely oversold). For our strategy when the RSI
broke the 65% barrier with an upwards momentum we
deemed the stock bullish. When it broke in a downwards
direction under 30% we deemed it bearish. The reverse
happens when the RSI breaks in the opposite direction
ie; when the price breaks under the 65% barrier the RSI
becomes bearish, and when it breaks up from the 35%
barrier we deemed it bullish. When the RSI is between
those 2 values we follow the trend, if it’s continually
going down then we are bearish, and if the rsi rises we
deem it bullish. The RSI is calculated with the following
equation;

RSI = 100− 100

1 + AverageGain
AverageLoss

We chose this Indicator due to it being a very popular
indicator within the industry. Fig 2 below is an example
of a graph with RSI indicator at the bottom. The purple
region shows the breakout points, above the purple
means its currently bullish, below the purple means its
bearish. Within the purple region we follow the trend.
Twitter Feed Evaluation: The public’s opinion of a
company is very important in a company’s stock price.
Twitter is an easy way to get a glimpse at the opinion
around a company. The general trend is that if the general
opinion of a company is positive, the stock price will
trend upwards. If the opinion on a company is negative,
the stock price will trend downwards. By pulling random
“tweets” that contain the company’s name, we are able
to analyze the wordage and determine the sentiment of
the tweet. When the algorithm wants to know when
to buy or sell based off the tweets, it will send it the
Company name. With the name, it will hit Twitter api

2

with a with the name and ask for 100 tweets. Once
we receive the tweets, we need to make sure there
are no images or hyperlinks in the text since that can
through off the sentiment of the tweet. After sanitizing
the tweets, we use a library called Textblob. Textblob
is a python api library that is used for textual analysis
and helps developers with natural language processing.
We choose to utilize it for their sentiment analyzer. A
sentiment analyzer looks for key words and phase in
the text to understand what emotions are used in the
text. For example: If a tweet contains the word “love”
it is likely the sentiment is very positive. If the Tweet
contains the world “hate” it tends to mean the text is
negative. If the text holds both “love” and “hate” it could
be either negative or positive which usually gets decided
as neutral. In our case for this project we used it to
understand if the tweet is just positive or not. If the tweet
is positive, we set the value to 1, if negative or neutral,
the value is set to 0. Since the api we used is limited
on how many times we can use it a day, we decided
to save the tweets in our database. Once all 100 tweets
have been analyzed. We sum up all the values and if the
sum is greater than the number sent to the program, it
will suggest buying the stock by returning 1, if lower, it
will return a 0.

Table I shows an example of this algorithm in produc-
tion. We have various tweets, with the company they are
associated with, and the rating.

TABLE I
THIS TABLE HOLDS REAL TWEETS SAVED TO THE DATABASE AND

THEIR SENTIMENT READING.

Tweet Company Name Sentiment Value

”TRADING IDEAS EXXON

LONG TERM BUY FREE

TRADE-OF-WEEK VIA...”

Exxon 1

”MILLENNIALS TRUST BITCOIN

BASED EQUITIES OVER

MICROSOFT DISNEY STOCK

BITCOIN BASED INVE...”

Microsoft 0

”JPMORGAN CHASE BANK

REMEMBER YOU ARE

NOT THE EMPEROR”

JPMorgan 0

”IBM AND ALIBABA TOPS

LIST OF MOST BLOCKCHAIN”
IBM 1

”I AM AS STRONG

AS TELSA”
Tesla 1

”...ACCUSES GOOGLE OF

ILLEGALLY FIRING WORKERS...”
Google 0

Four Candle hammer: The four candle hammer
strategy is a technical analysis of stocks. This strategy
also looks for market trends in stock by observing a
stock with a positive general trend, but with a recent
pullback in the price. The theory is that the general trend

will be resumed after a short pullback period. In our
implementation of the four candle hammer strategy, we
will observe a stock with a 20 day high and a 4-day
pullback, if the closing price on the 5th day is higher
than the closing price of a stock on the 4th day, we
assume the upwards trend will continue. We will then
buy that stock on the opening of the 6th day.

Fig 1 from the TechnicalStrategyGuides, shows an
explanation for the Four Candle Hammer Technical
Trading Strategy. Most days a four candle hammer will
not occur, but when it does, there is a large potential
for profits to be made. We chose to use the Four Candle
Hammer strategy, because it has a history of success,
and is a very analytical calculation.

This was implemented by querying from our database,
to determine if a 20 day high occurred 5 days ago. If
there was a 20 day high, and the past 5 days have been
lower than the 20 day high, a positive “buy” signal was
returned from this algorithm. It was very important to
have an active database we could query from. Without
our own database of stock prices, we would have reached
beyond the capacity of our allowed data api’s and would
not have been able to use this metric. Because we had
our own local data of each stock and it’s daily stock
movements, we were easily able to implement and use
the Four Candle Hammer strategy.

Bollinger Bands: Bollinger Bands a technical analysis
indicator developed by John Bollinger. The Bollinger
bands are based on examining the simple moving average
of the price over a chosen length of data. For our strategy
we used a sample of 14 data points to calculate the
simple moving average. The simple moving average is
calculated by adding the stock prices for the last n
days then dividing by the total number of periods. After
calculating the simple moving average we take a look at
2 standard deviation points in the positive and negative
direction. These standard deviation points are what create
our Bollinger bands. Our Bollinger Band strategy is
based on the ideology that if the price is within 3%
of the upper standard deviation then we feel the stock
will be ready for a drop in price so we deem the stock
bearish. On the other hand if the stock is within 3% of
the lower standard deviation then we believe the price
is due to rise and a buy action should be taken on the
stock. If the stock is within the middle region then we
should see if its above or below the moving average and
follow the trend.[5] Fig 3 below shows an example of
how Bollinger Bands look. The line within the middle
of the bands is the simple moving average.

Company News Sentiment:The most recent 50 news
articles from the previous day are pulled from news-
api.org for each stock and evaluated for writer sentiment.

3

Fig. 3. Bollinger Bands example. Image from
https://www.tradingview.com/chart/?symbol=NASDAQ%3ATSLA

This sentiment is processed by using a machine learning
driven phrase evaluation algorithm. The algorithm gives
the news article a sentiment from zero to one. It then
averages the sentiment of the 50 news articles. If the
average is above .5 then the stock is recommended as a
buy. Otherwise the stock is not recommended as a buy.

Using these trading strategies for the final project
demonstrated good results. Other trading strategies could
be added to find if those strategies would work better
for a given stock than the current strategies. After
these trading strategies recommend a buy or not buy
this information is sent on to the data processing unit
programmed in Python running on the Raspberry Pi.

The stock universe used for executing trades and
based on these strategies was a collection of popular
stocks from various industries. We chose these stocks,
because we knew we would get tweet, news, and strategy
information for each of these stocks. We also needed to
make sure that the volume of trades were high enough
that a sale and buy order would get through within a few
seconds of execution.

IV. TECHNOLOGIES

A. Software Implementation

This code can be found at
https://github.com/xdkxsquirrel/ML-HFT. When the
data processing portion of the project initially starts,
it creates a unique stock class object for each stock
in our universe. While doing this it pulls the current
weights that are stored in the remote database. The
weights are then sent over universal asynchronous
receiver-transmitter (UART) to be stored in memory

Ticker Company

AAPL Apple

AMZN Amazon

XOM Exxon

GE General Electric

GOOG Google

JNJ Johnson & Johnson

JPM JP Morgan

TSLA Tesla

WMT Walmart

TABLE II
THIS TABLE CONTAINS THE STOCK UNIVERSE WE CREATED FOR

THE PROJECT

on the FPGA for use later in the machine learning
calculations. Then the program checks if markets are
open, if not, it waits until they are. Then it will cycle
through each stock in our stock universe. For each
stock, the program checks the company news sentiment,
four candle hammer, bollinger bands, twitter sentiment,
and relative strength index. Then it sends each strategy
decision over UART to the machine learning algorithm.
The FPGA will then respond with the decision to buy
or not to buy the stock. If the decision for the current
stock is to buy, the program will buy the stock using
the Alpaca API. After cycling through all of the stocks
in our universe, the program waits for five minutes. The
program then sells all the stocks in currently held in
the portfolio. It then cycles through each stock that was
previously purchased and sends whether that stock went
up in value or went down in value. The data processing
program receives the updated weights from the FPGA
and sends those new weights to the remote database.
Then it starts the buying process again. The buying
process could not happen without the most important
part of the decision making, the machine learning
algorithm.

B. Machine Learning

The machine learning algorithm operates by taking
five popular trading strategies and learning which trading
strategies work well for each different stock in the stock
universe. This kind of machine learning is based upon
the multiplicative weight update method. This algorithm
works by creating a binary decision that needs to be
made based on the different trading strategies proposition
to buy or not to buy. In the first round, all strategies’
proposition have the same weight. The decision maker
will make the first decision based on the weight of the

4

Fig. 4. Diagram of full system on Raspberry Pi.

Fig. 5. Multiplicative weight machine learning update method.

strategies’ prediction. Then, in each successive round,
the decision maker will repeatedly update the weight of
each strategy depending on the correctness of its prior
predictions.

Fig 5 shows a diagram of the machine learning algo-
rithm that was implemented for our senior project which
runs on an FPGA to increase the speed at which the
machine learning algorithm calculates.

V. HARDWARE IMPLEMENTATION

A custom embedded system was designed with an
internet communication interpreter and trade execution
manager. This allows stock and company information
to be transformed from standard hypertext transfer pro-
tocol (HTTP) to our custom communication protocol
which then transfers data to the FPGA that contains our
machine learning algorithm. Data is collected through
available online data application programming interfaces
(APIs). Trade execution is made using the Alpaca bro-
kerage service. The dashboard front end displays per-
formance in a more easily understandable format for

viewers to monitor the machine learning algorithm’s
performance. The embedded system runs on a Raspberry
Pi. The internet communication interpreter and trade
execution manager is programmed in Python on an
advanced reduced instruction set computing machine
(ARM) Linux distribution. All trading algorithms were
created and written by our team to provide a unique
software component. All hardware was built and im-
plemented on the FPGA to create a unique hardware
component.

A. FPGA

CMOD S7: Breadboardable Spartan-7 FPGA Module
https://store.digilentinc.com/cmod-s7-breadboardable-
spartan-7-fpga-module/

FPGA board that is used to run the machine learning
algorithm that communicates with the Raspberry Pi using
UART to interface with the financial markets.

B. Raspberry Pi

Raspberry Pi 3 Model B +
https://www.adafruit.com/product/3775
Used to run the software that will interface the ma-

chine learning algorithm with the internet markets using
APIs.

C. Ticker/Dot Matrix

https://www.adafruit.com/product/420
Towards the end of the project, we decided we wanted

to include something to make the project more visual
when displaying the project to our peers without chang-
ing the project specifications. What we came up with
a ticker that displays the daily price changes of our
universe. Tickers are used in trading to help traders
identify potential buy/sells. We used three, 16x32 LED
panels placed in a row connected via GPIO pins on a
Raspberry Pi to create our small-scale ticker. Utilizing
the library provided by Heller Zeller, we were able to
query our database and do the necessary calculations to
get a working ticker for our price universe.

D. MLA Design on the FPGA

This code can be found at
https://github.com/xdkxsquirrel/ML-HFT-FPGA. The
machine learning algorithm that was built on the FPGA
was built using eight modules. The first module labeled
“UART RX” is a state machine that takes the serial
bits coming in from the UART receive line from the
Raspberry Pi and outputs an ASCII character for each
UART packet it receives. The next module, which

5

Fig. 6. The Representation of the FPGA’s Design

is labeled “Convert from ASCII,” is a state machine
that takes two ASCII characters and outputs the
corresponding byte. For example, the ASCII characters
“F” and “4” are converted to the hexadecimal byte 0xF4.
This Byte is then sent to the next module, which is
labeled “MLA,” which is a state machine that is acting
as a buffer. It waits for six bytes to be sent, then it sets
the command state and which stock is being used based
on the first byte sent. Then it passes on the next five
bytes to the actual machine learning portion of the code.
For example, the message string of “A1AB553321C3”
would be processed as: A = set weight command, 1 =
TSLA, AB = company news sentiment weight of 171,
55 = four candle hammer weight of 85, 33 = bollinger
bands weight of 51, 21 = twitter message sentiment
weight of 33, and C3 = relative strength index weight
of 195.

Once all five weights, the command, and stock data
has been received the information is passed on to the
next module labeled “stock weight.” This module is a
state machine that changes state depending on what
command has been sent. The five commands are set
weight, get weight, calculate buy, calculate weight gain,
and calculate weight loss. This module also holds the
weight of the stock in memory. This module is duplicated
eleven times, one for each stock in our trading universe.
When the command calc buy is sent, the module takes
which strategy is currently a buy, adds the weight of
those strategies for the current stock being decided on,
and sends a buy if the result of that addition is greater
than half of the sum of all of the weights. Otherwise, it
sends a do not buy.

The next module is an eleven to one mux with a selec-
tor based on which stock is currently being processed.
It routes the output from the stock’s weight module and
sends it to the next module labeled “convert to ASCII.”
This module takes the five hexadecimal numbers and
converts them to their respective ASCII representations.

Fig. 7. Example of the database schema

This is then passed to “parallel to serial buffer.” This
takes the five ASCII characters and sends them one at
a time to the final module which is a UART transmitter
that will send this data to the Raspberry Pi.

E. Database

A few weeks into our project, we quickly discovered
that the limiting factor of this project would be the cost
of data. For each data resource, who has an API for us to
use, there is a limit to the number of API calls we can do
daily. The daily allotment is much smaller than we would
need to measure stock prices and perform our finance
algorithms individually. To fix this problem, we created
a database to store all data, which we could access for
free. As a result, we did minimum api calls to APIs
containing data, and stored all resulting information into
our own internal database.

Below is the database schema for our stock storage.
Each stock has a price and weight objects for every day.
There was a script which ran daily to scrap the daily
stock information, and insert it into the database.

1) APIs: In order to actually mock buying and selling
stocks in a real market, we needed a way to automatically
ping the market for our buys and sells. There are a lot of
companies out there are offering an api to do just that.
We decided to choose Alpaca since it was free and we
can easily do these pretend trading called paper trading.

Our internal API was a graphQL endpoint. This end-
point was used to access the database, and to communi-

6

Fig. 8. Example of the API use

cate with the other sections of our project. This allowed
multiple systems to communicate asynchronously across
different devices. The ML algorithm was able to send
and retrieve weight information to perform calculations
with. Additionally, the Python script saved Twitter in-
formation, which was viewed and understood on the
website. Fig 8 is an example of a query to get all the
most recent trades executed.

Apart from our own internal API and Alpaca, this
project used a lot of external API’s as well to help us
gather and analyze as much data as possible. The Twitter
algorithm used a Twitter api for receiving tweets and the
Textblob api for textual analysis. The Company Data
algorithm used NewsApi to get news articles and then
used Indico api for their sentiment analysis. The profit
loss algorithm used iexapis api to get the company’s
quarterly earnings. The Moving Average, Bollinger and
RSI algorithms all used the AlphaVantage api to get the
daily cost averages.

F. Front End

In order to view the current status of all parts of our
system in an easy way we needed to develop a frontend.
We chose to develop our front end with React.Js. React
is a frontend javascript library which makes websites feel
more like desktop and mobile applications. We chose to
use react and bootstrap styling for a clean minimalistic
look, as well as being able to render mobile and desktop
views depending on which device the user opens the
website on. React allows an extremely fast way to re-
render parts of a website. If you go to our website you
can see that when you click on different links there is
no refreshing the browser but a re-rendering of only
the parts which need it. By clicking on different links
our router system removes and adds new elements to
our Document Object Model. We have 5 main pages or
“components” to our site. The dashboard is the main
landing page which displays overall statistics including

Fig. 9. This is the front page of our dashboard

our current portfolio value, profit/loss, number of tweets
we’ve analyzed, current positions, trades made, portfolio
positions and individual profit and loss, as well as overall
machine learning statistics. Once the dashboard compo-
nent is mounted (ready to be displayed) on the browser
we make asynchronous calls to our graphql backend to
get the data needed for our charts. The asynchronous
calls are done by using Apollo and Axios which are both
industry standard libraries for graphql queries. Once the
data is retrieved we have to process and extract the data
needed and update the state of our application. When the
page is first rendered the charts are rendered with empty
data until our call to the backend retrieves the data. Once
the data is retrieved and state is updated, the website re-
renders each chart one at a time with the appropriate
data. Chartist was our library choice for helping us to
create nice looking charts. The next main page of our
front end is the Stock List. This page shows us a list of
all stocks within our universe and allows us to track the
machine learning statistics for each stock over a period of
time. The last 3 pages, Trades, Tweets and Current prices
are pages listing our most recent trades our system has
made, the most recent analyzed tweets and the current
prices along with overall bearish or bullish indicators.
All of these pages are using asynchronous calls for
our data, and can be refreshed by once again clicking
on the link to the page or by refreshing the browser.
The front end react project is hosted on AWS through
Heroku and can be accessed anytime at https://quiet-
wave-30496.herokuapp.com/admin/dashboard. Since we
are on a free hosting tier it may take up to 30 seconds
to load the initial website. Our dashboard theme was
supplied by Creative Tim*, and list of installed libraries
can be found within the node modules folder.

7

Fig. 10. Final Profit/Loss Graph

Fig. 11. Apple and Tesla’s moving weights

VI. FINAL TRADING RESULTS

Unfortunately, we didn’t make any money with our
machine learning algorithm. Of the $100,000 of capital
we started with in our paper portfolio, we lost $2,435.09
over 4 months. There are many explanations for why our
algorithm didn’t result in positive cash flow.

One exciting thing about our results is that our al-
gorithm was completely uncorrelated with the market.
Instead of simply following market trends, our algorithm
performed independently.

In Fig 11 you can see how the weights for the different
algorithms in each stock changed over the course of a
day. The weights are correlated with each other, since
the cause of price couldn’t be completely isolated from
the price of a stock. Over time, our machine learning
approach was able to calculate the more relevant strategy
for that stock. Giving the weight associated with the rel-
evant strategy a higher weight, and lowering the weights
of lesser relevant strategies. As the days progressed, we
observed the weights fluctuating as new information was
being calculated and considered. Over the course of a
trading day, up to 100 data points and weight calculations
were recorded for each stock.

Again in Fig 11 you can see the weights for Apple
and Tesla. As expected, the Twitter weight for Tesla was
one of the highest weights, while the twitter weight for
Apple was the lowest. If given more time to continue
training and adjusting weights from over time, we believe
the machine learning algorithm would have been able to
more accurately predict future market trends.

VII. CONCLUSION

As Machine learning is becoming more prevalent in
our lives, through asking Alexa to buy items online, to
Netflix recommending which show to watch next [1]. It
is only natural to let a system that can dynamically adjust
to optimize performance make our financial decisions.
A system which is able to discover which financial
strategies correlate with stock prices. Creating a more
informed investment strategy.

Through our implementation of a high frequency
machine learning trading algorithm, we analyzed five
different stock trading algorithms. Each of these trading
algorithms stands alone as a useful and accurate financial
strategy. Each strategy can be used alone to evaluate the
short term potential profitability of a stock. Utilizing
machine learning, we attempted to optimize the per-
formance of these trading strategies for each individual
stock in our stock universe. Coding this machine learning
algorithm on FPGA hardware, we created a system that
is fast enough to handle high frequency trading for
a large universe of stocks. Although at the time of
this report, our implementation was not at the point of
profitability, we believe with adjustments to our machine
learning system we can create a reliable system that can
accurately discover market trends providing a profit.

REFERENCES

[1] S. Levy, “How Amazon Rebuilt Itself Around Artificial
Intelligence,” Wired, 30-Oct-2018. [Online]. Available:
https://www.wired.com/story/amazon-artificial-intelligence-
flywheel/. [Accessed: 29-Apr-2019].

[2] T. Mankar, T. Hotchandani, M. Madhwani, A. Chidrawar and C.
S. Lifna, ”Stock Market Prediction based on Social Sentiments
using Machine Learning,” 2018 International Conference on
Smart City and Emerging Technology (ICSCET), Mumbai,
2018, pp. 1-3. doi: 10.1109/ICSCET.2018.8537242

[3] GÜNDÜZ, Hakan, Zehra ÇATALTEPE, and Yusuf YASLAN.
2017. “Stock Daily Return Prediction Using Expanded Features
and Feature Selection.” Turkish Journal of Electrical Engineer-
ing & Computer Sciences 25 (6): 4829–40. doi:10.3906/elk-
1704-256.

[4] Ruggiero Jr. “Enhancing Trading with Technology”.
Futures: News, Analysis & Strategies for Futures,
Options & Derivatives Traders, 2000;29(7):56. Available:
http://search.ebscohost.com/login.aspx?direct=true
&db=f6h&AN=3194784&site=ehost-live. [Accessed: 11-
Dec-2019]

[5] A. Hayes, “Bollinger Band R©,” Investo-
pedia, 23-Apr-2019. [Online]. Available:
https://www.investopedia.com/terms/b/bollingerbands.asp.
[Accessed: 12-Dec-2019].

[6] “Simplified Text Processing,” TextBlob. [Online]. Avail-
able: https://textblob.readthedocs.io/en/dev/. [Accessed: 14-
Dec-2019].

[7] TradingStrategyGuides, “Technical Analysis Strategy – Four
Candle Hammer Strategy,” Trading Strategy Guides. [Online].
Available: https://tradingstrategyguides.com/technical-analysis-
strategy/. [Accessed: 14-Dec-2019].

8

[8] Hzeller, “hzeller/rpi-rgb-led-matrix,” GitHub, 07-Oct-2019.
[Online]. Available: https://github.com/hzeller/rpi-rgb-led-
matrix/. [Accessed: 14-Dec-2019].

9

