Project Management

Ken Stevens

ECE 4900

Credit: This was adapted from Al Davis’ CE Senior Project course
Project Management

- Topics
 - Teamwork complications
 - Idea selection
 - Setting scope and objectives
 - The reality of risks
 - Defining success
 - Realistic scheduling
 - Initial design requirements
 - Documentation
Team Projects

- Teamwork – it’s more elusive than you think
 - Leadership teams – common in the workplace and the thesis option
 - clear cut leader
 - point of resolution for disputes
 - often sets and articulates strategy
 - workload assignments and monitoring
 - focus is whole project’s scope and progress
 - ideally
 - experience, anticipate trouble before it hits
 - lead through difficulty in fair and productive fashion
 - merits respect through ability rather than demands through position
 - Peership teams – likely in 4900/4910
 - NO clear cut leader
 - although one may emerge
 - beware the yes-man underlings!!!
 - must still provide leader contributions
Choosing Teammates

- No single algorithm
 - personality and needs vary
 - “fire in the eyes” test
- This is a year-long collaboration
 - some qualities are apparent for the wish list
 - talent to do (as opposed to talk/pretend) the job
 - dependable
 - honest
 - inform group of problems BEFORE they become critical
 - efficient communicator
 - this is easier if mechanisms are articulated by the group in advance
 - committed to doing the job right
 - genuine enthusiasm for the project is an important marker
 - others?
Team Composition

- Obvious Requirements
 - group skills need to match project requirements
 - may be obvious but reality makes this hard

- The most crucial and hardest part to get right
 - affects everything else
 - the choice is persistent
 - so: take care on this aspect
 - problems are guaranteed
 - make sure they aren’t show stoppers
Team Destroyers

● Lack of open communication
 ◆ should be no difference in what group knows
 ■ personal design and implementation is encouraged
 ■ group review, problem solving, moving past stick points, etc.
 ◆ look out for cliques and sub-group formation!!

● Anything that delays clarity

● Anything that takes more time than it should
 ◆ disputes and competition is healthy if they are resolved in a timely manner
 ■ it’s not a contest
 ■ individuals don’t win or lose here – the group wins or loses together
 ■ differences of opinions help evolve the best answer
 ■ criticize ideas – not people

● Any negative emotion
 ◆ engineers design, philosophers emote
 ◆ disagree and commit
Idea Selection

- Idea & Team = Chicken & Egg
 - the idea needs to be embraced by the team
 - the team skills need to fit the idea
 - it’s an ordering problem

- In the end, the idea needs to:
 - be fun and exciting
 - you should all be truly excited to get this system working
 - must have an engineering scope that is commensurate with a full semester project dome by the number of people in the team

- Novelty requirement
 - There isn’t one – OK to design something you can buy
 - learning how to make things work is a lot of fun
Idea Pragmatics

● THE important point
 ◆ whatever your proposal is
 ■ it must be finished, documented, demonstrated
 ■ on time

● Psychologically
 ◆ if it’s fun you’ll do it AND do it well
 ◆ if it’s drudgery
 ■ you and the project will suffer
 ■ don’t go here

● Sample ideas
 ◆ talk to professors from classes you liked
 ◆ discuss with me
 ◆ brainstorm as a class
Scope

- It’s a 5 hour aggregate project by definition
 - definition: 5 hours/week in class + 10 hours/week homework
 - not many classroom hours, but meet with me as needed

- Hence
 - Initial scoping sanity check is by level of effort
 - 15 hours honest work \times 15 \text{ weeks} \times \text{number of team members}
 - or 225 hours per team member
 - DOES include
 - design, test, demonstration and documentation
 - does NOT include
 - parts lead time, etc.

- Planning for the right scope
 - suggests a manpower estimate for all the tasks
 - this means top-level design and planning
 - needs to be done right as soon as possible!!
Scope Problems

- Things we often underestimate
 - how slow we are
 - documentation time
 - debugging and test time
 - time lost due to screw-ups and risks
 - time lost due to people issues
 - hammered by another class
 - hammered by the need to ski
 - hammered by the need to take a break
 - hammered by sales people
 - lesson = plan for people, not robots
 - group communication time
 - regularly scheduled status meetings are a must
 - minimum requirement is once per week
 - results must be documented in a meeting log
 - can be short but MUST be regular
Group Scope

- Project scope $= \sum$ of the components

- Each component
 - ideally gets assigned to one individual
 - group components are allowed but a lead individual needs to be specified
 - distributed responsibility is a great way to plan for failure
 - the buck needs to stop somewhere

- Parallel efforts
 - key to productivity
 - only works when interfaces are articulated, understood, and documented IN ADVANCE
 - and when screw-ups are communicated instantly

- Component-wise design, testing, and combination
 - process should be clear and scope should be doable with a comfortable margin
Setting Objectives

● The specifics of what you will DO

● Keys to success (remember you must finish!!)
 ♦ have a baseline set of objectives
 ■ what you’re sure you can pull off in the allotted time
 ● with room to spare
 ■ something you’ll be proud of
 ● this is MUCH MORE important than you might think
 ● It’s the crowning achievement of your undergraduate career
 ● future employers/grad schools will place a lot of value on this and so should you
 ♦ add a wish list
 ■ what you hope you can also pull off
 ● if things go smoothly
 ■ and you’re pretty sure you’ll knock the socks of the judges
 ● Prof Stevens, your mother, your future employer, etc.
Risk Management

● Every project has risks
 ◆ people/parts/design/testing/salesmen/weather. . .

● 1st step in managing risks
 ◆ articulate them (this is required in your proposal)
 ■ no need to go crazy at this point
 ◆ remember quality engineering is concerned with reality
 ■ e.g. Joe gets drafted to serve in Iraq (oops...)
 ■ er: Joe gets abducted by Martians
 ◆ sure it’s a risk, but not a plausible one
 ◆ primary plan – plausible avoidance of the risk
 ◆ mitigation plan – what happens when the primary plan fails
 ■ might be as simple as how the project proceeds without the risky component
 ■ ideally provides a plan on how to deliver an equivalent or at least adequate substitute
Surprises

- Every project has them
 - the best planned projects articulate them as risks also

- Large group projects
 - have even more surprises
 - more people mean more communication surprises
 - OK, call them misunderstandings or optimizations
 - more personality issues
 - more dependencies
 - bigger scope means more things can go wrong
 - more interfaces
 - more components
 - probably starts to look like Murphy’s law
Defining Success

● Key part of the project planning process
 ◆ defining EXACTLY how you know whether the objectives have been met
 ■ this must be articulated for the system as a whole and for each major component

● Demonstrating a capability
 ◆ requires defining a test and non-subjective way to score the result
 ■ in reality the test may have several components
 ■ this is what you’ll show on the final demo day

● Subjective evaluation
 ◆ rarely makes sense, so avoid it
 ◆ exceptions exist for every rule
 ■ e.g. what if your system generates music
 ● non-subjectively it will have to make sound
 ● subjective as to whether the music is good or not
Success and the Final Demo

● Why is it such a big deal?
 ◆ because it influences your grade
 ■ OK - this is an operational issue but isn’t the point

● The Point:
 ◆ we’re in a professional discipline
 ◆ and labor is in an over-supply situation
 ■ your job could move to India/China/Russia
 ■ doesn’t matter if the situation changes
 ◆ bottom line
 ■ the best people get good jobs and the average people don’t get very impressive choices
 ◆ the most compelling evidence of what you can do with your education
 ■ is what you have chosen to do and executed as your senior project or thesis
 ◆ NOTE: grad student GPA’s are in the who care’s column – its all about what you did for your thesis
Scheduling

- Note: this requires experience and skill to do properly
 - normally you’ll find this very hard at this early career stage

- What’s required?
 - account for EVERY aspect of the project
 - provide a per-man and per-task GANT chart
 - basically a time-line and dependence chart
 - at any given point in the next year you should be able to answer
 - what team member x is going to be doing on day y
 - this may be overkill, but think of it as an idealized target
 - risk factors should be clearly articulated
 - regular meaningful milestones and the test procedures need to be clear
 - slip impact should be easy to determine
 - margin levels should also be relatively clear
Project Aspect

- Team selection & idea articulation clearly needs to happen first
 - and be revised, scoped, and finally frozen once everybody is happy
 - NOTE: your proposal won’t be finished yet.

- Then it starts for real
 - initial design flow
 - component identification
 - lesson learned: in the end this part couldn’t do what we thought it could
 - result – demoralizing failure to achieve your goals or extra panic to replace the part with the proper one
 - interface design and specification
 - absolutely critical to enable parallel effort
 - initial design specification and schedule
 - includes tasking, testing, milestones, risk assessment, etc.
 - The Bill of Materials (you’ll read lots of specs)
 - supplier identification – primary and secondary
 - lead times (everything needs to be in place by Christmas)
 - proposal
 - detailed specification of the above
 - you’ll need my approval BEFORE you get the green light to write it
Initial Design

- Proposal contents review
 - abstract of functional objectives
 - top level design
 - tasking
 - interface specification
 - testing plan and process
 - integration models
 - risk analysis
 - schedule
 - Bill of materials
High Level Design Implications

Implication

- high level design needs to be done before Thanksgiving
- creative part can be a lot of fun
 - however, the blue-sky needs to meet reality
 - of proper scope and realizable by you on time
 - both grade and satisfaction will suffer if you can’t pull it off
- HW, SW, & synthesis modules need to be specified
 - need to be clear about what you’ll design vs. what you’ll acquire
 - the interfaces need clear definition
 - which is why the will be required in the proposal
 - hardware components will need to be understood
 - web time and lots of reading and group discussion are in your future
- everybody in the group needs to understand this high level design thoroughly!!!
A Note on Help

● Fundamentally
 ✦ this project is about what your team knowledge, creativity, and skill can produce
 ■ the next stage of your career is watching
 ✦ you get to lead the choice for a change
 ■ make it both fun and rewarding

● However
 ✦ feel free to learn from outside experts
 ■ faculty, friends, colleagues, papers, books, etc.
 ■ make sure these sources are cited in your documentation
 ● required now due to academic ethics
 ● will be required later by law and professional/corporate ethics
 ✦ BUT make sure the actual design/implementation/theest is done ONLY by the team
Documentation

• Two main documents

 ◆ 4900 – project proposal
 ■ See “Proposal Writing” presentation
 ■ KEY concept
 ● this starts now and largely evolves

 ◆ 4910 – final project report
 ■ thorough description of the entire project
 ● ideally working repository of decision and status (lab notebook)
 ● with format and contents sufficient for publication in conference
 ● others should be able to reproduce your work from this document
 ■ KEY concept
 ● this should evolve from your proposal and lab notebook