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Multi-Synchronous Wins Big

1. Efficiency in power and performance is new game in town

2. We need to think about problems differently

3. New timing model is one excellent path to progress

4. Multi-synchronous design gives ave. 10× eτ2 improvement

l Pentium: eτ2 = 17.5×
l FFT: eτ2 = 16.9×

Design Energy Area Freq. Latency Aggregate
Pentium F.E. 2.05 0.85 2.92 2.38 12.11×
64-pt FFT 3.95 2.83 2.07 3.37 77.98×
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Outline

1. New Generation of commercial multi-synchronous architectures

l Best multi-synchronous is a-synchronous
l Mixed clocked and asynchronous circuits
l Enabler: Relative Timing
l Foundation: Formal Methods

2. Relative Timed Design Flow Overview

3. Comparison to Clocked Technology

l 10× improvements in eτ2

l Demonstrated across broad set of design classes
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Commercializing Multi-Synchronous ICs

1. Timing is a key method of gaining eτ2 improvement

l Multi-synchronous allows best optimization of design
l Exploit affect of time in our circuits and architectures
l Relative Timing supports all time methods & models

2. Utilize best capabilities in industry

l No change plus minimal enhancements to EDA / CAD / flows
l Cell libraries unmodified

3. Leverage designer’s creativity

l Provide familiar design environment
l Enhance modularity and design visibility
l Do not restrict circuits, architectures, flows
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Disruptive Technology

“In some sense, Apple’s most fundamental problem, perhaps,
is that a superior technology is still an inferior solution if it
lacks synergy with the mainstream.”

Michael Slater, MPR Vol 11 No. 17, Dec. 29 1997, p27

None of the technical issues matter
if the disruptive technology doesn’t

integrate with the mainstream.

New Direction for Async Design:

l Utilize clocked CAD to synthesize, place, and route
unclocked designs.

. . . but how?
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Disruptive Technology

“In some sense, Apple’s most fundamental problem, perhaps,
is that a superior technology is still an inferior solution if it
lacks synergy with the mainstream.”

Michael Slater, MPR Vol 11 No. 17, Dec. 29 1997, p27

None of the technical issues matter
if the disruptive technology doesn’t

integrate with the mainstream.

New Direction for Async Design:

l Utilize clocked CAD to synthesize, place, and route
unclocked designs.

. . . but how? relative timing!
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Timing and Sequencing

Traditional representation of timing:

l Metric values

u On an IC we measure it to picoseconds
u In track and ski racing, we measure it to milliseconds

But what do we really care about?

l it isn’t the number on the stop watch. . .
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Timing and Sequencing

Traditional representation of timing:

l Metric values

u On an IC we measure it to picoseconds
u In track and ski racing, we measure it to milliseconds

But what do we really care about?

l it isn’t the number on the stop watch. . .

We care about who wins!!

The key: Timing results in sequencing

Relative Timing formally represents the signal sequencing
produced by circuit timing
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New Formal Abstract Model: Relative Timing

l Timing is both the technology differentiator and barrier
l Relative Timing is the generalized solution
l The key property of time is the sequencing it imposes

Sequence gives winner, performance, etc.

l true in semiconductors as well as sports
l absolute stopwatch value is auxiliary

Novel relativistic formal logic
representation of time (relative timing):

pod 7→ poc1 ≺ poc2

Sequencing relative to common reference
l can now evaluate sequencing
l can now control sequencing
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Relative Timing
1. Relative Timing

l Sequences signals at poc (point of convergence)
l Requires a common timing reference: pod (point of divergence)

2. Formal representation: pod 7→ poc1 ≺ poc2 + margin

3. RT models timing in ALL systems

l Clocked: pod = clock poc = flops
l Async: pod = request poc = latches

4. RT enables direct commercial CAD support of general timing requirements

l formal RT constraints mapped to sdc constraints

POD POC
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B

POD

POC0

POC1

FFi FFi+1
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i i+1
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data
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Relative Timed Design: Bundled Data

Bundled data design is much like clocked.

CL CLLi Li+1 Li+2
n n

clock network

Frequency based (clocked) design.
Clock frequency and datapath delay of
first pipeline stage is constrained by
Li/clk↑i 7→ Li+1/d+s ≺ Li+1/clk↑i+1

CL CLLi Li+1 Li+2
n n

Ctli Ctli+1 Ctli+2

reqi
acki

reqi+1
acki+1

reqi+2
acki+2

reqi+3
acki+3

delay delay

Timed (bundled data) handshake
design. Delay element sized by
RT constraint:
reqi↑ 7→ Li+1/d+s ≺ Li+1/clk↑

Relative Timing technology supports DI and bundled data styles.
However, productivity, area, power, synthesis and library issues all
favor the bundled data style.
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Relative Timing Technology
Only method that supports integrated asynchronous and
clocked methodologies within traditional ASIC CAD flows
Circuit Level Tools/Flows

l optimized circuits & protocols

l relative timing characterization

u formal proofs of correctness

l timing mapped to traditional CAD

System Level Tools/Flows

l design multi-frequency systems

l formal verification of
system protocols

l mixed clock & async design flows

lr

ra
rst

rr

la

clki 7→ data≺ clki+1︸ ︷︷ ︸ +m︸︷︷︸
spec.
design

-

- RT-FV

?

timing
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6

initial
conditions

-t -
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constr. STA

?

absolute
margins

- signoff
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Multi-Synchronous is Fundamental

Timing is where the rubber hits the road

l Best multi-synchronous is a-synchronous

u Asynchronous design is continuous in time
u No penalty for moving between frequency domains
u Enables energy efficient, small solutions

l RT produces multi-synchronous compatibility with clocked EDA

u Same CAD, map timing constraints as sdc
u Timing driven flow using clocked tools
u Compatible with any cell library
u New circuit templates and support CAD
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Relative Timed Productivity vs. Creativity

Hide the Complexity

set d0 fdel 0.600
set d0 fdel margin [expr $d0 fdel + 0.050]
set d0 bdel 0.060

set size only -all instances [find -hier cell lc1]
set size only -all instances [find -hier cell lc3]
set size only -all instances [find -hier cell lc4]

set disable timing -from A2 -to Y [find -hier cell lc1]
set disable timing -from B1 -to Y [find -hier cell lc1]
set disable timing -from A2 -to Y [find -hier cell lc3]
set disable timing -from B1 -to Y [find -hier cell lc3]

set max delay $d0 fdel -from a -to l0/d
set max delay $d0 fdel -from b -to l0/d
set min delay $d0 fdel margin -from lr -to l0/clk
set max delay $d0 bdel -from lr -to la
#margin 0.050 -from a -to l0/d -from lr -to l0/clk
#margin 0.050 -from b -to l0/d -from lr -to l0/clk

Retain the modularity

Nathan Sawaya, Lego Artist
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Simplified RT Design Flow

ASIC Flow used as an example: Clocked Design

High Level
Design Synthesis Physical

Design Validation
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Simplified RT Design Flow

ASIC Flow used as an example: Async / Clocked Design

High Level
Design Synthesis Physical

Design Validation

Async Circuit
Modules

Relative Time
Characterization

Constraint
Mapping

Timing
Closure

Performance
Validation

Works for custom flows as well.
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RT Characterization: Pipeline Control Example

Example pipeline controller:
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Structural Design Modules

Requires structural asynchronous design modules

module pipe ctl (lr, la, rr, ra, ck, rst);
input lr, ra, rst;
output la, rr, ck;
INVX1A12TH lc0 (.A(ra), .Y(ra ));
AOI32X1A12TH lc1 (.A0(lr), .A1(ra ), .A2(y ), .B0(lr), .B1(la), .Y(la ));
INVX1A12TH lc2 (.A(la ), .Y(la));
AOI32X1A12TH lc3 (.A0(ra ), .A1(lr), .A2(y ), .B0(ra ), .B1(rr), .Y(rr ));
NOR2X1A12TH lc4 (.A(rr ), .B(rst), .Y(rr));
c element lc5 (.A(la), .B(rr), .Y(y ));
INVX1A12TH lc6 (.A(la ), .Y(ck));

endmodule // pipe ctl

These are now inserted into a “standard” Verilog design.
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Characterization and Constraint Mapping
set d0 fdel 0.600
set d0 fdel margin [expr $d0 fdel + 0.050]
set d0 bdel 0.060

set size only -all instances [find -hier cell lc1]
set size only -all instances [find -hier cell lc3]
set size only -all instances [find -hier cell lc4]

set disable timing -from A2 -to Y [find -hier cell lc1]
set disable timing -from B1 -to Y [find -hier cell lc1]
set disable timing -from A2 -to Y [find -hier cell lc3]
set disable timing -from B1 -to Y [find -hier cell lc3]

set max delay $d0 fdel -from a -to l0/d
set max delay $d0 fdel -from b -to l0/d
set min delay $d0 fdel margin -from lr -to l0/clk
set max delay $d0 bdel -from lr -to la
#margin 0.050 -from a -to l0/d -from lr -to l0/clk
#margin 0.050 -from b -to l0/d -from lr -to l0/clk
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“Lego” Design Flow

Simple conceptual asynchronous design almost same as clocked:

l Replace clocked pipeline always @ (posedge clock) with

1. asynchronous pipeline controller template
2. memory array (usually latch bank) template
3. handshake steering logic templates

Becomes a “schematic” design style

l Add behavioral datapath

l Create async architecture

u optimize design frequencies, . . .

Then we can create architectures using traditional CAD flows.
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Concurrency and Time

1. What is the relationship between time and concurrency in an
integrated circuit system?

2. Can time be exploited to improve a design or protocol?

Observation: System faster if assume logic faster than cycle time:
note 7-input domino OR gate, cell operates at 3.6GHz in 250nm

tagin7

tagin1

irdyack
bufreq

bufack
irdy L1 L7

tagout7

tagout1
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Timed Asynchronous Designs
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Multi-rate 64-Point FFT Architecture

Initial design target: high performance military applications

l Mathematically based on WN = e− j2π
N notation

l Hierarchical multi-rate design: N = N1N2

l Decimate frequency (↓) by N2

u operate on N2 low frequency streams

l Transmute data & frequency to N1 low frequency streams

l Expand (↑) by N1 to reconstruct original frequency stream
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Design Models

Hierarchical derivation of multi-frequency design:

Xm1(m2) = ∑
N2−1
n2=0

[
W m1n2

N ∑
N1−1
n1=0 xn2(n1)W

m1n1
N1

]
W m2n2

N2

l N2 FFTs using N1 values as the inner summation

l Scaled and used to produce N1 FFTs of N2 values

Hierarchically scale design

l Base case when N = 4, X(m) =W 4x(n)

l 4-point FFT performed without multiplication

u Multiplication constants W 4 become ±1
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FFT-64

Implemented on IBM’s 65nm 10sf process, Artisan academic library

Three design blocks:

l FFT-4

l FFT-16 N1,N2 = 4

l FFT-64 N1 = 16, N2 = 4

Two designs:

l Clocked Multi-Synchronous

l Relative Timed Multi-Synchronous

u near identical architectures
u additional RT area / pipeline optimized version for FFT-64
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General Multi-rate FFT Architecture

1.25GHz 313MHz 313MHz to 78MHz
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1.25GHz 78MHz ASIC tool flow, 65nm technology
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FFT-4 Building Block

Data flow graph of pipelined 4-Point FFT design:

Re{x[0]} + + Re{X[0]}

Im{x[0]} + + Im{X[0]}

Re{x[1]} + - Re{X[1]}

Im{x[1]} + - Im{X[1]}

Re{x[2]} - + Re{X[2]}

Im{x[2]} - + Im{X[2]}

Re{x[3]} - - Re{X[3]}

Im{x[3]} - - Im{X[3]}
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Pipelined Asynchronous 4-Point Architecture

l Operates at 1/4 the input frequency

l Synchronization occurs between decimated rows

u Fast internal pipeline stages essential
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Decimator-4 Design Comparison

l Clocked block requires pipeline to change frequency

l Async block latency combinational and concurrent
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General Multi-rate FFT Architecture

1.25GHz 313MHz 313MHz to 78MHz
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Coding Like Schematic Capture
module FFT 64 (ri, ai, DI, ro, ao, DO, reset);

linear control tk0 (.lr (ri), .la (ai), .rr (p0r), .ra (p0a), .ck(ck0), .rst(reset));
latch P0 (.d(DI), .clk(ck0), .q(P0D0));
decimator 2 D2 00 (.dI(P0D0), .d1(P00D1), .d2(P00D2), .ri(p0r), .ai(p0a), .r1(p00r1), .r2(p00r2),

a1(p00a1), .a2(p00a2), .reset(reset));
linear control tk00 (.lr (p00r1), .la (p00a1), .rr (p01r), .ra (p01a), .ck(ck00 1), .rst(reset));
latch P00 (.d(P00D1), .clk(ck00 1), .q(P01D1));
decimator 2 D2 01 (.dI(P01D1), .d1(P0DT1), .d2(P0DT3), .ri(p01r), .ai(p01a), .r1(p0rt1), .r2(p0rt3),

a1(p0at1), .a2(p0at3), .reset(reset));
linear control tk01 (.lr (p00r2), .la (p00a2), .rr (p02r), .ra (p02a), .ck(ck00 2), .rst(reset));
latch P01 (.d(P00D2), .clk(ck00 2), .q(P01D2));
decimator 2 D2 02 (.dI(P01D2), .d1(P0DT2), .d2(P0DT4), .ri(p02r), .ai(p02a), .r1(p0rt2), .r2(p0rt4),

a1(p0at2), .a2(p0at4), .reset(reset));

FFT 16 F16 0 (.ri(p0rt1), .ai(p0at1), .dI(P0DT1), .ro(p1rt1), .ao(p1at1), .dO(P1DT1), .reset(reset));
FFT 16 F16 1 (.ri(p0rt2), .ai(p0at2), .dI(P0DT2), .ro(p1rt2), .ao(p1at2), .dO(P1DT2), .reset(reset));
FFT 16 F16 2 (.ri(p0rt3), .ai(p0at3), .dI(P0DT3), .ro(p1rt3), .ao(p1at3), .dO(P1DT3), .reset(reset));
FFT 16 F16 3 (.ri(p0rt4), .ai(p0at4), .dI(P0DT4), .ro(p1rt4), .ao(p1at4), .dO(P1DT4), .reset(reset));

linear control tk2 0 (.lr (p1rt1), .la (p1at1), .rr (p2rt1), .ra (p2at1), .ck(ck1 0), .rst(reset));
latch P2 0 (.d(P1DT1), .clk(ck1 0), .q(P2DT1));

CB64 1 CB 1 (.update(p1at2), .dO(CDT2), .en(endt2), .reset(reset));
comp mult CM 1 (.A(P1DT2), .B(CDT2), .P(CP2), .en(endt2));
linear control tk2 1 (.lr (p1rt2), .la (p1at2), .rr (p2rt2), .ra (p2at2), .ck(ck1 1), .rst(reset));
latch P2 1 (.d(CP2), .clk(ck1 1), .q(P2DT2));

CB64 2 CB 2 (.update(p1at3), .dO(CDT3), .en(endt3), .reset(reset));
comp mult CM 2 (.A(P1DT3), .B(CDT3), .P(CP3), .en(endt3));
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Results
The 16-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

Points Word Time for 1K-point Clock Tech. Energy/point Area Power Energy Area Throughput

bits µs MHz nm pJ/data− point mW Benefit Benefit Benefit

Our Design(Async) 16-1024 32 0.83 1274 65 25.05 54 Kgates 30.9 8.01 2.77 8.32

Our Design(clock) 16-1024 32 1.73 588 65 41.83 71 Kgates 24.7 4.8 2.07 3.98

Guan [1] 16-1024 16 6.91∗ 653∗ 130 200.68 147 Kgates 29.7∗ 1 1 1

The 64-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

Points Word Time for 1K-point Clock Tech. Energy/point Area Power Energy Area Throughput

bits µs MHz nm pJ/data− point mW Benefit Benefit Benefit

Our Design(Async-opt) 64-1024 32 0.93 1284 65 62.41 0.41 mm2 68.5 6.1 0.46 30.16

Our Design(Async) 64-1024 32 0.84 1366 65 59.94 0.50 mm2 72.9 6.35 0.38 33.42

Our Design(clock) 64-1024 32 3.13 588 65 246.75 1.16 mm2 80.7 1.54 0.16 8.99

Baireddy [2] 64-4096 - 28.14∗ 514∗ 90 380.88 0.19 mm2∗ 13.86∗ 1 1 1

The 64-point async-opt design contains 229k gates, our clocked 454k.
∗ For comparison, these designs were scaled to a 65nm process by doubling the frequency and halving the power in
the 130nm technology, and multiplying frequency, power and area in the 90nm design by 1.43, 0.7, and 0.49
respectively.

[1] X. Guan, Y. Fei, and H. Lin, “Hierarchical Design of an Application-Specific Instruction Set Processor for High-Throughput and Scalable
FFT Processing” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 20, No. 3, pp. 551–563, march 2012.

[2] V. Baireddy, H. Khasnis, and R. Mundhada, “A 64-4096 point FFT/IFFT/Windowing Processor for Multi Standard ADSL/VDSL
Applications”, in IEEE International symposium on Signals, Systems and Electronics (ISSSE’07), pp. 403–405, 2007.
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Commercializing Multi-Synchronous ICs

1. Timing is a key method of gaining eτ2 improvement

l Multi-synchronous allows best optimization of design
l Exploit affect of time in our circuits and architectures
l Relative Timing supports all time methods & models

2. Utilize best capabilities in industry

l No change plus minimal enhancements to EDA / CAD / flows
l Cell libraries unmodified

3. Leverage designer’s creativity

l Provide familiar design environment
l Enhance modularity and design visibility
l Do not restrict circuits, architectures, flows
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Multi-Synchronous Wins Big

1. Efficiency in power and performance is new game in town

2. We need to think about problems differently

3. New timing model is one excellent path to progress

4. Multi-synchronous design gives ave. 10× eτ2 improvement

l Pentium: eτ2 = 17.5×
l FFT: eτ2 = 16.9×

Design Energy Area Freq. Latency Aggregate
Pentium F.E. 2.05 0.85 2.92 2.38 12.11×
64-pt FFT 3.95 2.83 2.07 3.37 77.98×
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