Estimating MTBF of Multi-Stage Synchronizers

D. Zar1, T. Chaney1, J. Cox1, S. Beer2 and R. Ginosar2

1Blendics, Inc., St. Louis, Missouri,
2EE Dept., Technion-Israel Institute of Technology, Haifa, Israel
Synchronizers Essential in Multi-Synchronous SoCs

- Low-skew, global clock trees problematic
- Survey of proposed SoC design starts*
 - 32% contain > 50 clock domains
 - 12% contain > 100 clock domains
- Each CDC requires reliable synchronization

* Survey by Graham Bell, Director of Marketing, Real Intent, Inc. See:
Old Rules of Thumb* Unreliable

• Problematic because of increases in
 – Clock speeds
 – Data rates
 – Number of CDCs
 – Semiconductor process variability
 – Tau (low power $\rightarrow V_m \sim V_t$)
• FO4 no longer predicts τ
• Negative temperature coefficient of V_t

* Two FFs in cascade are almost always enough, but when you are worried, use three.
Determining Synchronizer MTBF

• Intrinsic parameters - vary with PVT
 – Settling time-constant τ_{eff}
 – Number of stages n
 – Aperture width $T_W(n)$

• Extrinsic parameters - vary with application
 – Clock rate f_C
 – Data transition rate f_D
 – Duty cycle α
Determining Synchronizer Parameters

• Physical measurements \rightarrow protracted testing
 – Testing at PVT corners $-$ impractical number of runs
 – Testing multi-stage synchronizers $-$ interminable

• Circuit simulation \rightarrow automated, pre-fab testing
 – Synchronizer standard-cell designer specifies:
 • Intrinsic parameters: $\tau_{\text{eff}}, n, T_W(n)$
 – Synchronizer standard-cell integrator specifies:
 • Extrinsic parameters: f_C, f_D, α
 – MTBF formula for a multi-stage synchronizer needed
Over the years, many ways to estimate MTBF in multi-stage synchronizers have been presented in the literature. Here are three common forms:

- Kinnement, Altera and others: MTBF\((n) \) is proportional to waiting \(n \) times as long. (2007)
- Gabara, et al: master and slave latches have independent \(T_W \). (1992)

\[
MTBF_{Kinniment}(n) = \frac{\exp[nT_C/\tau]}{T_W f_D f_C}
\]

\[
MTBF_{Kleeman}(n) = \frac{\exp[(nT_C-nt_p)/\tau]}{T_W f_D f_C}
\]

\[
MTBF_{Gabara}(n) = \tau \frac{\exp[(nT_C-2nt_s^S)/\tau]}{T_W^2 f_D f_C}
\]
Simulation vs. Measurement

- Simulating with *MetaACE*, we compared a latch τ with measurements on a 65 nm, low-power circuit ($\tau \pm 5\%$).
Some MetaACE results

Output of First Flip-Flop

Output of Second Flip-Flop
Comparison of MTBF Results

MTBF Calculation Methods for a 4-Stage Synchronizer Based on Identical Master-Slave Flip-Flops (IBM 90 nm, -1 σ, -40 C, 1.1 V)
Published Formulas Conservative

- Existing formulas treat inter-stage coupling conservatively
- Voltage traces leaving metastability
 - V_N is voltage range that covers invalid, next-stage outputs.
 - V_L is voltage range that covers invalid, last-stage outputs.

- For multi-stage synchronizers $V_L << V_N$ and as a result MTBF based on V_L can much greater than that based on V_N
- Therefore must simulate entire synchronizer
Estimation of MTBF by Formula

Blendics MTBF Calculation for Multi-Stage Synchronizers Based on Master-Slave Flip-Flops (IBM 90 nm, -1 σ, -40 C, 1.1 V)

\[
MTBF(n) \geq MTBF_{Blendics}(n) = \frac{\exp \left[\frac{nT_C}{\tau_{eff}} \right]}{T_W(n)f_Df_C}
\]

\[
\frac{1}{\tau_{eff}} = \frac{1}{2} \left(\frac{1}{\tau_M} + \frac{1}{\tau_S} \right)
\]

4 flip-flops

3 flip-flops

2 flip-flops

Simulated

Calculated

Blendics Inc.
Predicting Synchronizer MTBF Important

• More multi-synchronous SoC designs
• Low-voltage circuits increase τ
• Low-temperature operation increases τ
• Semiconductor variability increases failure risk
• Failures hard to recognize in silicon
 – Must have accurate MTBF before fab
 – MTBF can be calculated from τ_{eff}, n and $T_w(n)$
Acknowledgments

• This material is based upon work supported by the National Science Foundation under Grant No. 0924010.

• Additional support was provided by the National Innovation Fund, Omaha, NE.
Thanks and questions