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6-2 ONE FUNCTION OF TWO
RANDOM VARIABLES

Given two random variables x and y and a function g(x, y), we form a new random
f\?ariableiz as

z=g(xy) (6-36)

Given the joint p.d.f. fi,(x, ), how does one obtain f;(z), the p.d.f. of zr:? Prob-lems 9f
(his type are of interest from a practical standpoint. For example, a received signal in
4 communication scene usually consists of the desired signal buried in 1101§e,l and this
formulation in that case reduces to z = x+y. Itis important to know the statistics of the
incoming signal for proper receiver design. In this context, we shall analyze problems

of the type shown in Fig. 6-6. Referring to (6-36), to start with,
F.(z) = P{z(§) <z} = P{g(x,y) <z} = P{(x,y) € D¢}
= ff Foy(x, y)dxdy — (6-37)
x,yeD,

where D, in the xy plane represents the region where the inequality g (x, y) < zis satisfied
(Fig. 6-7).

x+y

min(x, y) x/y

V22 + y?

min(x, y) 5
max(x, ¥) tan” ' (x/y) FIGURE 6-6

D

z
gy =z

FIGURE 6-7
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Note that D, need not be simply connected. From (6-37), to determine F,(z) it is
enough to find the region D, for every z, and then evaluate the integral there.

‘We shall illustrate this method to determine the statistics of various functions of x
and y.

m P Letz = x +y. Determine the p.d.f. f,(z).

From (6-37),
z=Xx+tYy

F:(z) = Pix+y=z}= / /H: fey(x, y)dxdy (6-38)
y=—00 Jx=—cc

since the region D, of the xy plane where x + y < z is the shaded area in Fig. 6-8 to
the left of the line x 4 y < z. Integrating over the horizontal strip along the x axis first
(inner integral) followed by sliding that strip along the y axis from —oo to +00 (outer
integral) we cover the entire shaded area.

We can find f,(z) by differentiating F.(z) directly. In this context it is useful to
recall the differentiation rule due to Leibnitz. Suppose

b(z)

F(2) = fx,z)dx (6-39)
a(z)
Then
dF, db(z biz) ,
£ = 222 = P ), 0 - LD i), 2+ ] WCD 0 640
z dz dz ) 9z
Using (6-40) in (6-38) we get
00 P z—)
fil) = /,w (E e y)dx) dy
R g 8 Xy E)
=/ (I‘fxy(z_y=J’)—0+] f"a(j”)dy
- [ oz =y, y)dy (6-41)

Alternatively, the integration in (6-38) can be carried out first along the y axis
followed by the x axis as in Fig. 6-9 as well (see problem set).

S

oY

FIGURE 6-8
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FIGURE 6-9

If x and y are independent, then

fxy(xa y) = fa(x)f)(y) (6-42)
and inserting (6-42) into (6-41) we get
f(2) = /w frlz = fHdy = fﬁ fr@) fylz —x)dx (6-43)

This integral is the convolution of the funcfions fi(z) and fy(2) efxp;essed tlw; dﬁzr:;t

ways. We thus reach the following conclusion: If ‘two randqm varl.al.) es are indep )

then the density of their sum equals the convolution of their densmes—. o 550y,
As a special case, suppose that f,(x)=0 for x <.0 and f,(y)=0for y <0,

we can make use of Fig. 6-10 to determine the new limits for D;.

In that case R
FZ(Z) = / fxy(x!y)dx‘dy
y

—0 J x=0
or sy e
= == xv(x1y)dx) dy
fZ(Z) _/_;::[} (BZ L:U 'f)
_ ]{j folz—y.)dy z2>0 (6-44)
0 z %0

FIGURE 6-10

EXAMPLE 6-7

| EXAMPLE 6-8

On the other hand, by considering vertical strips first in Fig. 6-10, we get

i) = f f 7 fuCey)dydx
x=0Jy=0

or

Pl [ fowmz-nds

/Z @) fylz—x)dx z>0
== 0

0 z=<0

(6-45)
if x and y are independent random variables. <

P> Suppose x and y are independent exponential random variables with common pa-

rameter A. Then
£:5) = ke U (x) f () = reMU(y) (6-46)

and we can make use of (6-45) to obtain the p.d.f. of z=x+7y.
z Z
() = f Ao M e gy — )20 f dx
: 0

0
= 722U (z) (6-47)

As Example 6-8 shows, care should be taken while using the convolution formula for
random variables with finite range. <

P> x and y are independent uniform random variables in the common interval (0, 1).
Determine f;(z), where z = x + y. Clearly,

Z=X+y=0<z<2

and as Fig. 6-11 shows there are two cases for which the shaded areas are quite different
in shape, and they should be considered separately.

=Y

D=z<1 1=<z<2

FIGURE 6-11
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For0<z <1,
b4 z—y Z Z2
Fz(z)=f / ldxdy = (z—y)dy=—= 0<z=<l1 (6-48)
y=0Jx=0 y=0 2

For 1 < z < 2, notice that it is easy to deal with the unshaded region. In that case,

1 1
Fz(z)zl—P{z>z}=1*f f ldxdy
y=z—l.Jx=z-y

1
B s 2
=1—/ (1—2+y)dy:1#( Zz) 1<z<2 (649
¥

s ]

Thus

_sz(z)_ Z 0<z<l1
fo2) = iz _{Zﬁz 1 £5 28 (6-50)

By direct convolution of fy(x) and fy(y), we obtain the same result as above. In fact,
for 0 < z < 1 (Fig. 6-12a)

i
ﬁ@=fmrﬂﬂmh=/lw=z (6-51)
0
fyfx) flz =04 flz — 0 %)
1 X z—1 4 X z "}
(@ 0=z<1
£ 4 flz—x) flz = X5
1 2 z—1 T x g—1 1 Tk
b)) 1sz<2
)
0 2 "z

(@)

FIGURE 6-12

e e o s

and for 1 < z < 2 (Fig. 6-12b)
1
f@) = f ldx=2—z (6-52)
z—1 ‘

Fig. 6-12¢ shows f(2). which agrees with the convolution of two rectangular waveforms
aswell.

P Letz=x-7y. Determine f;(2)-
From (6-37) and Fig. 6-13

<] Z+y
F,()=Px—y=<zl= f _[ foy(x, y)dxdy

y=—00 =—00
and hence
dF(z oo
=22 = [ ety (6-53)
Z —00
If x and y are independent, then this formula reduces to
o
0= [ £ rnpdr= KD HO) (6-54)
—00

which represents the convolution of fx (—z) with fy(2)-
As a special case, suppose

fix)=0  x<0, fM=0 y=<0

and that gives rise to two situations

In this case, z can be negative as well as positive,
ation forz > 0andz < 0

that should be analyzed separately, since the regions of integr

are quite different.
For z = 0, from Fig. 6-14a

00 nZ-+y
F.(z) = / / fry(x= y)dx dy
=0 J x=0

= - Ax=z+y

AT
/




EXAMPLE 6-10

z=X/y

YA YA

xX=z+y x=z+y

. /z x /
/|

(@) (b)

=Y

FIGURE 6-14
and for z < 0, from Fig. 6-14b

o0 z+y
ro= | Foy(, Yy dx dy
y=—z Jx=0
After differentiation, this gives i
f fo+y.ndy z20 P
&

Jf(2) = o0 (6-55)
Sol+y,»dy z<0

’— B <

. A
> Let z = x/y. Determine f;(z). % sl
We have l,{f R
F.(z) = P{x/y < z} (6-56)

The inequality x/y < z can be rewritten as x < yzify > 0,and x > yz if y < 0. Hence
the event {x/y < z} in (6-56) needs to be conditioned by the event A = {y > 0} and its
compliment A. Since AU A = §, by the partition theorem, we have

P{x/y <z} = P{x/y <zN (AUA)}
=Plx/y<z,y>0) + Px/y<z,y <0}
= Plx <yz,y > 0} + P{x > yz,y < 0} _(6-57)

Fig. 6-15a shows the area corresponding to the first term, and Fig, 6-15b shows that
corresponding to the second term in (6-57).
Integrating over these two regions, we get

o] 354 0 o0
F,(z) = f f Jo(x, y)dxdy + / Jolx,y)dxdy (6-38)
y=0Jx=—00 ¥

=—00 Jx=yz

T marioru  TWwUrRAINDULNNL YAILADLES a4 r

OGN IUNONSEN P x and y are jointly normal random variables with zero mean and

B S R
1 e_.I:Z(I—J'Z](U]?‘ ‘71‘72+n22):|
2roioaa/1 — 1

Show that the ratio z = x/y has a Cauchy density centered at ro1 /0.

Foy(x,y) =

YA by
xly = Z/ .
X
= 3
57 Py >
*
"} xly =z
(@) Px=yz,y>0) (B) P(x = yz,y <0)
FIGURE 6-15
| sl . YA
% P .,\\‘; _\r\
=
NN
j /s
+
y < © x FIGURE 6-16
U'\"i "% Differentiation gives
\
| oo 0
- .
, 1 r@= [ stoznar+ [ 0z
o RN A7 0 —00
: fe e
= [ stz ay (6-59)
| —00
Note that if x and y are non-negative random variables, then the area of integration
reduces to that shown in Fig. 6-16.
A ‘This gives
v e 7 o
A . aaw F(2) =/ Foy(x, y)dxdy
s N o w 7 /\,} == L\ y=0 Jx=0
O or
| (o.0]
/ 1= [ 3otz ndy (6-60)
Floc x4

(6-61)
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Note that 0 < z < 1, since x and y are non-negative random variables
F?(Z):P{Z'(Z]_P(LSZ =P(x<yi |
x+y L=z I

o0 pyz/(l-z)
= [ ] f:\')‘ (}\?, y) dx dy
<0 a

SOLUTION
Inserting (6-61) into (6-59) and using the fact that fiy (—x, —y) = fyy(x,y), we obtain

2
_),ll%l;ld _ UO

2 o0
(== f e
f: 2roi0av/ 1 — 1% Jo Y ? waioa/ 1 —1?

where
i 2 :
2 s
9 = h ; : o
() (22/612) g —— ( 1 /0_22) where we have made use of Fig. 6-16. Differentiation with respect to z gives
Thus £l /mJ Y .
@) = | = o 0z/(1 —2),y)dy
Jo (L—g2"'™ Late

_ 0102V1 —J”Z/JI' :
f(2) o3z — rayfon)? +of(l—1%) (662

which represents a Cauchy random variable centered at ro1/0z. Integrating (6-62) from
— o0 to z, we obtain the corresponding distribution function to be

= [ 32 1 TR
= n=1,—y/(1-2)a
o (I=2)* "™ T (m)T (n) (1 —z) yle I dy

1 1 oo
= / );”"""‘1 e V(-2 dy
0

am-i-nl"(m)]_'(n) (1 —zym+t

F.(2) = - + — arctan 22X 2 (6-63)
LY== - ™ n— H— o0 Ui
z 2 7 o/ 1—r? = M-/ gt g, L@ tm
< Tenre) ¥=FomTm? ¢
. = m—-1 | n—1
As an application, we can use (6-63) to determine the probability masses n1y, ma, = Bmm)” W =g Demal (6:66)
0 otherwise i

ma, and my in the four quadrants of the xy plane for (6-61). From the spherical symmetry

of (6-61), we have which represents a beta distribution. 4

my = ms3 My = N4

But the second and fourth quadrants represent the region of the plane where x Jy <0

:

|

\

IHGNINRIERE P Letz = x* + y2. Determine f,(z). |
We have |

The probability that the point (x, y) is in that region equals, therefore, the probability 21 y?
that the random variable Z = X/¥ is negative. Thus y
F,(2) = Plx* +y2 < _/f
1 1 r z +y" <z} =
my +my = Pz = 0) = F,(0) = 3~ p arctan : . ) iyt Jay(x, y)dx dy .:
—r = :
But, x> +y? < . . . .‘
— +y* < zrepresents the area of a circle with radius ./z, and hence (see Fig. 6-17) . ‘
11 r Y = -‘
my+my=1—(m + mas) = — + —arctan ———= _ =y
Sl TR T m J1—r? FZ(Z)—/ \/—/ J—fx_\’(x,y)dxdy |
Y=—A/Z Jx=— z—yl
If we define o = arc tan r/+/1 — r?, this gives
1 1 o y
ml=m3=1+2a‘n mzznuzz—g (6_64) & |
Of course, we could have obtained this result by direct integration of (6-61) in each ,/_ \ S
quadrant. However, this is simpler. 3ty =z “
z
m P Letxandy be independent gamma random variables with x ~ G(m, a) and y ~ >
G(n, o). Show that z = x/(x + y) has a beta distribution.
Pmof. fx):(xs y) = fr(x)fy(y)
1 1—1 =1 ,—(+3)/
e n i x @ 65 ——
T (m)T (1) ¢ x>0 y>0 (6-68 V2
FIGURE 6-17
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This gives

JZ
fz(z)=[ ZZ\/_{fu(\/z— )+ Fol—vZ R ldy  (6:67)
<

As an illustration, consider Example 6-14.

EXAMPLE 6-14 [ S y are independent normal random variables with zero mean and common

EXAMPLE 6-15
z=/x%+y?

variance o2, Determine f,(z) for z = x* + y2.
g

SOLUTION
Using (6-67), we get

fo= [ T (L e,
7= . :
o vz 2z —y? 202 ¥

—2/20 —-z/20'2 /2 ﬁcos ]
do
/ 'z wo? /(; /zcosé
1 2
= @e*zﬂ” U(z) (6-68)

>
where we have used the substitution y = ./z sin@. From (6-68), we have the following:
If x and y are independent zero mean Gaussian random variables with common variance
o, then x* + y* is an exponential random variable with parameter 202, <

P Letz = \/x2+y2. Find f,(z).

SOLUTION
From Fig. 6-17, the present case corresponds to a circle with radius z2. Thus

z-—y2
F,(z) = ] f Feoy(x, ¥)dx dy
y=—z o= 2232

and by differentiation,

f2(z) = ﬁ{f;y(\/z =YL+ fy(—VZ2 = ¥4 )ldy  (6-69)

In particular, if x and y are zero mean independent Gaussian random variables as in the
previous example, then

2

z Z
=2 S —
(@) fo JZ = 2 2ma?

e*(ZZ*J'Z'H’Z]/z”z dy

7z2 /26"

/2
2z e_zz/gazj”/ zcosd 7
o zcosf

|-

- a—'ze*fﬂ“ U(z) (6-70)

which represents a Rayleigh distribution. Thus, if w = x + iy, where x and y are
real independent normal random variables with zero mean and equal variance, then

EXAMPLE 6-16
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the random variable |w| = /x> + y? has a Rayleigh density. w is said to be a complex
Gaussian random variable with zero mean, if its real and imaginary parts are independent.
So far we have seen that the magnitude of a complex Gaussian random variable has
Rayleigh distribution. What about its phase

8 =tan~! G) (6-71)

Clearly, the principal value of @ lies in the interval (—n /2, m/2). If we letu = tanf =
¥/x, then from Example 6-11, u has a Cauchy distribution (see (6-62) with oy = o,
r=0)
/JT

Julu) = 2l —00 < U < 0O
As a result, the principal value of @ has the density function

1 l/m
\d@/d |f” = (1/sec29) tan26 + 1

I/m —nw/2<8<mn/2

- {0 otherwise

Jo(0) =

(6-72)

However, in the representation x + jy = re/?, the variable @ lies in the interval (—, 1),
and taking into account this scaling by a factor of two, we obtain

1 /21: —rT<f<m
Jo(6) = . (6-73)
otherwise

To summarize, the magnitude and phase of a zero mean complex Gaussian random
variable have Rayleigh and uniform distributions respectively. Interestingly, as we will
show later (Example 6-22), these two derived random variables are also statistically
independent of each other! <

Let us reconsider Example 6-15 where x and y are independent Gaussian random
variables with nonzero means ji, and p, respectively. Then z = /%% + y? is said to be
a Rician random variable. Such a scene arises in fading multipath situations where there
is a dominant constant component (mean) in addition to a zero mean Gaussian random
variable. The constant component may be the line of sight signal and the zero mean
Gaussian random variable part could be due to random multipath components adding up
incoherently. The envelope of such a signal is said to be Rician instead of Rayleigh.

P Redo Example 6-15, where x and y are independent Gaussian random variables with
nonzero means p, and ji, respectively.

SOLUTION
Since

o=+ (r—11y)"1/ 207

fxy(x, )’) = )

substituting this into (6-69) and letting y=zsinf, pu=4/u? +pu2, u,=pcosg,
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iy = sin ¢, we get the Rician distribution to be

e~ G+uB)20t pr/f2
fi(z) = Z (em cos(f—@) /o’ + e—zy.cos(9+¢>)/uz) 46
£ 27{0’2 —/2
Z(:.—(zz-%-,l‘il)/er2 /2 , 32
_ (/ gt cos(@—g)/a? 40 +j ez,uu:os.(@#:))/u2 d@)
2ro? —n/2 /2
—@+u?) /207
ze 478
= (%) (6-74)
o o
where
A il 2 ] 1 T ]
I[}(??) s 7/ erjces(&—qb) do = _/ encoa&' de
21 Jo T Jo
is the modified Bessel function of the first kind and zeroth order. <
Order Statistics
In general, given any n-tuple X, X, ..., X,, we can rearrange them in an increasing
order of magnitude such that
Xy =X < - X
where x(jy = min(x, X, ..., X,), and x() is the second smallest value among x;, X, . . .,
X, and finally x(,y = max(x;, X, ..., X, ). The functions min and max are nonlinear op-
erators, and represent special cases of the more general order statistics. If xq, X5, ..., X,
represent random variables, the function x, that takes on the value x, in each pos-
sible sequence (x1, X2, ..., X,) is known as the kth-order statistic. {x), X2, .- ., Xon )
represent the set of order statistics among n random variables. In this context
R =% (6-75)

represents the range, and when n = 2, we have the max and min statistics.

Order statistics is useful when relative magnitude of observations is of importance.
When worst case scenarios have to be accounted for, then the function max(-) is quite
useful. For example, let x4, X3, . .., X, represent the recorded flood levels over the past

n years at some location. If the objective is to construct a dam fo prevent any more
flooding, then the height H of the proposed dam should satisfy the inequality

H > max(xy, X, ...,X%,) : (6-76)

with some finite probability. In that case, the p.d.f. of the random variable on the right
side of (6-76) can be used to compute the desired height. In another case, if a bulb
manufacturer wants to determine the average time to failure (1) of its bulbs based on a
sample of size n, the sample mean (x; + %3 + - - - +x,,)/n can be used as an estimate for
(. On the other hand, an estimate based on the least time to failure has other attractive
features. This estimate min(x;, Xz, . . ., X,) may not be as good as the sample mean in
terms of their respective variances, but the min(-) can be computed as soon as the first
bulb fuses, whereas to compute the sample mean one needs to wait till the last of the lot
extinguishes.

EXAMPLE 6-17

z = max(x, y)
W = min(x, y)
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> Let z = max(x, y) and w = min(X, y). Detennjne_sz(_z)ialldim(w).

2 = max(x, y) = {-—x W=l (6-77)
== y xX=Y

we have [see (6-57)]

F;(z) = P{max(x,y) <z}
=Pl{x=<z,x>y)U(y=zx=Yy)}
=Px<z,x>yl+Ply<z,x<yj}
since {X > y} and {x < y} are mutually exclusive sets that form a partition. Figure 6-18a
and 6-18b show the regions satisfying the corresponding inequalities in each term seen

here.
Figure 6-18¢ represents the total region, and from there

F,(2) = P{x <2,y <2} = Fyy(z. 2) (6-78)

If x and y are independent; then

F,(z2) = Fx(Z)Fy(Z)

YA y
x=z
J/ i
4 v
x=y +
F Y=
x=z (z,2) (z,2) =2
£ ™
x>y ysz

(@ Plx=<z,x>y)

(z.2)

=Y

FIGURE 6-18
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) Jr YA .
) ) 3

y=w

(@) Ply=w, x>y} () P{x =w, x =y}

YA
(w, w)
e
()
FIGURE 6-19
and hence
f:(z) = F; (Z)fy (2) + fx(Z)Fy(Z) (6-79)
Similarly,
— ik _)y x=>=%
w = min(x,y) = {x =T (6-80)
Thus,

Fy(w) = P{min(x, y) < w}
=Plysw,x>y}l+Px<w,x<y}

Once again, the shaded areas in Fig. 6-19a and 6-19h show the regions satisfying these
inequalities, and Fig. 6-19¢ shows them together.
From Fig. 6-19¢,

Fow)=1—Plw>w}l=1—-P{x>w,y > w)
= Fy(w) + Fy(w) — Fyy(w, w) (6-81)

where we have made use of (6-4) with x; = y» = oo, and x; = y; = w. <

EXAMPLE 6-18

EXAMPLE 6-19
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P> Let x and y be independent exponential random variables with common parameter
A. Define w = min(x, y). Find f,, (w).

SOLUTION
From (6-81)

Fyy(w) = Fe(w) + Fy(w) — F(w) Fy(w)
and hence
fow) = frw) + fy(w) — fe(w) Fy(w) — Fe(w) fy(w)
But f,(w) = f,(w) = Ae ¥, and Fy(w) = Fy(w) = 1 —e™*", 50 that
Fuw) = 22e™ —2(1 — e*)he ™ = 22 MU (w) (6-82)

Thus min(x, y) is also exponential with parameter 21.. <

P> Suppose x and y are as given in Example 6-18. Define
_ min(x,y)

¢ max(x,y)

Although min(-)/max(-) represents a complicated function, by partitioning the whole
space as before, it is possible to simplify this function. In fact

<<
pi= {x/y REd (6-83)
y/X x>Y¥
As before, this gives
F(z) =P{x/y<z,x=2y}+ Ply/x<z,x>y}
=P{x<yz,x<y}+ Ply=xz, x>y}

Since x and y are both positive random variables in this case, we have 0 <z < 1. The
shaded regions in Fig. 6-20a and 6-20b represent the two terms in this sum.

¥ YA

b

WA
AN

A

(a) (b)

FIGURE 6-20
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From Fig. 6-20,

00 pyz 00 pxz
am=f] mmwmw+f/ Fip Gy by
0 Jx=0 0 Jy=0

f:@@) = f yoy(vz, y)dy + / xfiy(x, xz)dx
0 0

Hence

= fo ¥(Feoy @z, ¥) + fiy (v, y2)) dy

o0
— / ykz (e—l(yz+)=) £ g—l(y-t—yz)) dy
Jo

= 242 /'00 ye MY gy = 2 /OO ue " du
Jo (1+2)* Jo

2
={ (1+2)?
0 otherwise

OD<cz<l1
(6-84)

|

EXAMPLE 6-20

> Let x and y be independent Poisson random variables with parameters A; and A,
respectively. Let z = x + y. Determine the p.m.f. of z.

Since x and y both take values {0, 1, 2, ...}, the same is true for z. For any n =
0,1,2, ..., {x+y = n} gives only a finite number of options for x and y. In fact,ifx = 0
then y must be n; if x = 1, then y must be n — 1, and so on. Thus the event {x + y = n}
is the union of mutually exclusive events Ay, = {x =k, y=n —kL,k=0— n.

DISCRETE
CASE

=0

Plz=n}=P{x+y=n}=P (U{x—k y_n—k}>

=> Plx=ky=n—k}

(6-85)
k=0
If x and y are also independent, then
Plx=ky=n—-kl=Px=P{y=n—k}
and hence
n
Plz=n}=Y Plx=kiPly=n—k)
k=0
_ i: M kk b Agfk _ e—(Gatry) n! )L‘;‘)L'z”k
£l (n—k)! nl ki — k)
AL+ A)"
= e_“'“ﬂ(il)—, 7 =0,1,2 ..z .00 (6-86)

n!
Thus z represents a Poisson random variable with parameter A; + A,, indicating that sum
of independent Poisson random variables is a Poisson random variable whose parameter
is the sum of the parameters of the original random variables.

EXAMPLE 6-21
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As Example 6-20 indicates, this procedure is too tedious in the discrete case. As we
shall see in Sec. 6-5, the joint characteristic function or the moment generating function
can be used to solve problems of this type in a much easier manner.

6-3 TWO FUNCTIONS OF TWO
RANDOM VARIABLES

In the spirit of the previous section, let us look at an immediate generalization. Suppose
x and y are two random variables with joint p.d.f. f,y(x, ¥). Given two functions g (x, y)
and f(x, y), define two new random variables

(6-87)
(6-88)

z=3gXxy)

W= h (X, ¥)
How does one determine their joint p. d f fzu, (z, w)? Obviously with f;,,(z, w) in hand,
the marginal p.d.f:s f,(z) and f,,(w) can be easily determined.

The procedure for cletetmmmg fzw (z, w) 1s the same as that in (6-36). In fact for
given numbers g and w, &

- Fou(z,w) = P{z(§) =z, w(§) = w} = P{g(x,y) <z, h(x,y) = w}

— P{(x,y) € Dy} = ﬁ £ 0 LY

(x. €D

(6-89)

where D, , is the region in the xy plane such that the inequalities g(x, y) <z and
h(x,y) < w are simultaneously satisfied in Fig. 6-21.
We illustrate this technique in Example 6-21.

} Suppose x and y are independent umformly distributed random variables in the
mterva] (0 a). “Define z = min(x, y), w = max(x, y) Determine f5,,(z, w).

SOLUTION
Obviously both z and w vary in the mterva] (0_ @ - Thus
zw(Zs I.U) =0 if z<0 or w=<0 (6_90)
F.u(z,w) = Plz < z,w < w} = P{min(x,y) < z, max(x,y) <w} (6-91)
_ 1
= p o = , X112
4 % ’d:(»‘a < S

. 1 oW
4 <&fn\-‘/\

[ o A ? 4 q&

—

FIGURE 6-21
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FIGURE 6-22

We must consider two cases: w > z and w < z, since they give rise to different regions
for D, ,, (see Fig. 6-22a and 6-22b).

For w = g, from Fig. 6.22a, the region D, , is represented by the doubly shaded
area (see also Fig. 6-18¢ and Fig. 6-19¢). Thus

Foulz,w) = ny(zs w) + ny(w; Z)— ny(zs zZ) t/wz 4 (6‘92)
and for w < z, from Fig. 6.22b, we obtain
F. (z,’w) = F(w, w) W<z / (6-93)
with
Xy Xy
Foy(x, y) = Fr(x)F,(y) = Al (6-94)
we obtain VL (&‘
Qwz — z2)/6? O<z<w<6
Fw 3 — o
20(z, 1) {14)2/92 O<w<z<¥b (6-95)
Thus
2/6 O<z<w<§f
Jew(z, w) = . (6-96)
0 otherwise
From (6-96), we also obtain
f(z)—fgf (zw)dw—g(l—i) 0<z<8 (6-97)
z = . zw Ly == 0 P 4
and
i 7 2w
fw(w)z/ Sfan(z, w)dZZEZ— D<w<§@ (6-98)
0
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wy YA
4,
w + A‘u)c b (X9, ¥2) B
Aw
(Z, ’U)]A: B{\ z_':EZ EA[
I 1
: Az : (xp. ) EA,-
- . (i 2)
z x
A
(2 L=
(a) )]
FIGURE 6-23
Joint Density

If g(x, y) and 2 (x, y) are continuous and differentiable functions, then, as in the case of
one random variable [see (5-16)], it is possible to develop a formula to obtain the joint
p-d.f. fu(z, w) directly. Toward this, consider the equations

gx, )=z hx,y)=w (6-99)

For a given point (z, w), equation (6-99) can have many solutions. Let us say (x1, y1),
(x2, ¥2)s + .+, (x4, y,) represent these multiple solutions such that (see Fig. 6-23)

g(xi,yi)=z  h(,y)=w (6-100)
Consider the problem of evaluating the probability

Piz<z<z4+Az,w <w=<w+ Aw}
=Plz<gxy) <z4+ Az, w < hxy) <w+ Aw} (6-101)

Using (6-8) we can rewrite (6-101) as
Plz<z<z4+Az,w <w=w+ Aw} = frw(z, w) Az Aw (6-102)

But to translate this probability in terms of f,, (x, ¥), we need to evaluate the equivalent
region for Az Aw in the xy plane. Toward this, referring to Fig. 6-24, we observe that
the point A with coordinates (z, w) gets mapped onto the point A’ with coordinates
(xi, v;) (as well as to other points as in Fig 6.235). As z changes to z + Az to point B in
Fig. 6.24a, let B’ represent its image in the xy plane. Similarly, as w changes to w + Aw
to C, let C’ represent its image in the xy plane.

Finally D goes to D', and A’B'C’ D' represents the equivalent parallelogram in the
xy plane with area A;. Referring to Fig. 6-23, because of the nonoverlapping nature of
these regions the probability in (6-102) can be alternatively expressed as

Y OPIxY) € A} =" fiy (i yi) A (6-103)
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FIGURE 6-24
Equating (6-102) and (6-103) we obtain
: A;
Jew(z, w) = Z Sy (xis yi) - (6-104)

Az Aw

To simplify (6-104), we need to evaluate the area A; of the parallelograms in Fig. 6.24p

in terms of Az Aw. Toward this, let g1 and h; denote the inverse transformation in (6-99)
so that h ,

X = gi(z, w) yi = hi(z, w) (6-105)

As the point (z, w) goes to (x;, y;) = A’, the point (z + Az, w) goes to B’, the point
(z, w + Aw) goesto C’, and the point (z + Az, w+ Aw) goes to D'. Hence the respective
x and y coordinates of B’ are given by

d
g1+ Az, w) =gi(z,w) + —&Az:x,- +?'EAZ (6-106)
0z 9z
and
. ok dh
hi(z+ Az, w) = hy(z, AT e ]
) = hi(z, w) + a7 Be=yit 5 Az (6-107)
Similarly those of €’ are given by
ag dh,
Xi + % Aw ¥i + EE Aw (6—108)

The area of the parallelogram A’B'C’D’ in Fig. 6-24b is given by
A; = (A'B")(A'C')sin(@ — ¢)

= (A'B’cos ¢)(A'C’sinf) — (A’B’sin¢)(A'C’ cos ) (6-109)
But from Fig. 6-24b, and (6-106)-(6-108)
8g1 % oh
A'B cosp = 21 A, A'C'sing = L A :
a2 sin w w (6-110)

; ahy d
A'B'sing = — A A'C — 28
() 3z Az cos @ = Aw (6-111)
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so that
ag] 3]1,] 3g1 ak]
=2 2 Az A 6-112
As (az dw dw 0z Law v )
and
ba g
; h dgq oh
A _ (318 dgidh\ _| 9z 9w (6-113)
Az Aw dz dw  dw 9z dh, ok
9z ow

The determinant on the right side of (6-113) represents the absolute value of the Jacobian
J(z, w) of the inverse transformation in (6-105). Thus

b o

Tewj=| = &9 (6-114)
ahy Ol
dz Jw

Substituting the absolute value of (6-114) into (6-104), we get

1
Faulz ) = 3 V@l fiyGiia ) = ) s fy i) (6115)

i i

ﬁ%w#ﬁ—L - 119

J(xf! }’:)|

where the determinant J(x;, y;) represents the Jacobian of the original transformation
in (6-99) given by

since

dg dg
ax B

Ty =]~ P . (6-117)
oh  dh

3% Y limziy=y,

We shall illustrate the usefulness of the formulas in (6-115) through various examples.

Linear Transformation
z=ax+ by w=cx+dy (6-118)

If ad — bc +# 0, then the system ax + by = z, cx + dy = w has one and only one
solution

x =Az+ Bw y=Cz+ Dw
Since J(x, y) = ad — bc, (6-115) yields

fow(z, w) = fey(Az + Bw, Cz + Dw) (6-119)

lad — bc|




2 ABILITY AND RANDOM VARIABLES

EXAMPLE 6-22

JOINT NORMALITY. From (6-119) it follows that if the random variables x and y are
jointly normal as N (i, jiy, 07, 07, p) and

Z =ax+ by w=cx+dy (6-120)
then z and w are also jointly normal since f;,,(z, w) will be an exponential (similar to
:f.ry (x, ) with a quadratic exponent in z and w. Using the notation in (6-25), z and w
in (6-120) are jointly normal as N (i, ftw, 07, 03, p.u), Where by direct computation

Mz = ﬂ,@x +buy -
Pw = Cliy +dpty

, (6-121
o =a’o? + 2abpo,o, + po? )

oy = c’0f + 2cdpooy + d2o}
and
aco? + (ad + bc)po,o, + bdcrj?
0,0

In particular, any linear combination of two jointly normal random variables is normal.

Pzw =

P> Suppose x and y are zero mean independent Gaussian random variables with common

variance o2, Definer = /x2 + y2. 0 = tan~!(y/x), where |6| < 7. Obtain their joint
density function.

SOLUTION
Here
1 —(x24y2) /242
Far(x, y) = S e ORI (6-122)
Since
r=gx,y)=+vx*+y*  0=h(xy) =tan"!(y/x) (6-123)

and 0 is known to vary in the interval (-, 1), we have one solution pair given by

X1 =rcosf Y1 =rsind (6-124)
We can use (6-124) to obtain J (r, @). From (6-114)
3)61 3)5]
ar 90 cosf —rsinf
J(r,0) = = |, = o
@ ?ﬂ sin@ rcosf ’ (&-133
ar 06
so that
[J(r,0)=r (6-126)
We can also compute J(x, y) using (6-117). From (6-123),
X ¥
. ey 1 1
T(m,y) = | VI vERE | = (6-127)

—y x T e z
P Ay X“+y r

EXAMPLE 6-23
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Notice that |/ (r, 8)| = 1/|J (x, y)|, agreeing with (6-116). Substituting (6-122), (6-124)
and (6-126) or (6-127) into (6-115), we get

Fron8) =rfyGiy) = -~ 5e” " 0<r<oo  |8l<m (6128)

2ol
Thus
fr(r) = fro(r,0)do = %e*"lﬂ“z 0<r<oo (6-129)
J—m a
which represents a Rayleigh random variable with parameter o2, and
o0
1
@ = [ fat0vdr =5 ol < (6-130)
0 2

which represents a uniform random variable in the interval (—m, ). Moreover by direct
computation

fra(r,8) = fi.(r) - fo(@) (6-131)

implying that r and @ are independent. We summarize these results in the following
statement: If x and y are zero mean independent Gaussian random variables with common
variance, then /x2 + y2 has a Rayleigh distribution, and tan~!(y/x) has a uniform
distribution in (—m, 7r) (see also Example 6-15). Moreover these two derived random
variables are statistically independent. Alternatively, with x and y as independent zero
mean random variables as in (6-122), x + jy represents a complex Gaussian random
variable. But

X+ jy = ref® (6-132)

with r and @ as in (6-123), and hence we conclude that the magnitude and phase of a
complex Gaussian random variable are independent with Rayleigh and uniform distri-
butions respectively. The statistical independence of these derived random variables is
an interesting observation. <

P> Letx andy be independent exponential random variables with common parameter A.
Defineu = x +y, v = x — y. Find the joint and marginal p.d.f. of wand v.

SOLUTION
It is given that

: 1 .
oG, y) = F.e“(“f-")/* x>0 y=>0 (6-133)
Now since u = x + y, v = x — ¥, always |v| < u, and there is only one solution given
by
u—+v u— v
— = 6-134
x 5 y 5 ( )
Moreover the Jacobian of the transformation is given by

1 |
1 -1

J(x,y) = =-2
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EXAMPLE 6-

2

5

and hence

fun(n,v) = 212 ¢

represents the joint p.d.f. of u and v. This gives

O< vl <u<oo (6-135)

g

1 L
Ju(u) = f Jur(u,v)dv = | A gy = A—‘ze*"/l O<u<oo (6-136)
o0 1 e 1
vy = f Fiw(t, V) du = ﬁ e dy = ﬂe_l”w‘ —00 <V <00
v

(6-137)
Notice that in this case f,,(u, v) # f,(u) - f,(v), and the random variables u and v are
not independent.

As we show below, the general transformation formula in (6-115) making use of
two functions can be made useful even when only one function is specified.

AUXILIARY VARIABLES. Suppose
z=g(x,y) (6-138)

where x and y are two random variables. To determine f,(z) by making use of the
formulation in (6-115), we can define an auxiliary variable

W=X OofF W=y¥y (6-139)
and the p.d.f. of z can be obtained from f,,(z, w) by proper integration.

P Supposez = x + y and let w = y so that the transformation is one-to-one and the
solution is given by y; = w, x; = z — w. The Jacobian of the transformation is given by

1

J(x,y):lo | =1
and hence
Faw(x, ¥) = fiy (1, y1) = fiy(z — w, w)
or
+00
L@zjﬁMawmwz Foole — s il (6-140)

which agrees with (6-41). Note that (6-140) reduces to the convolution of fx(z) and
fy(z) it x and y are independent random variables. <

Next, we consider a less trivial example along these lines.

’ Letx ~ U(0, 1) and y ~ U(0, 1) be independent random variables. Define
z= (-2 Inx)"? cos(2my) (6-141)

Find the density function of z.

EXAMPLE 6-26
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SOLUTION
We can make use of the auxiliary variable w = y in this case. This gives the only solution

to be

X = e—[zsec(Zn’w}]l/Z (6-142)
n=w (6-143)
and using (6-114)
BX] a.X[ ax
i : 8_z 3 —zsec?(2mw)e sec(2z w)2/2 551
Z,w = —_
n o I
dz  dw
= —zsec? (2 w)e EsECTWI/2 (6-144)
Substituting (6-142) and (6-144) into (6-115), we obtain
fonlz, w) = zsec?@mw)e w2 oo <z <400 O<w<1 (6-145)
and
1 2 [l -
f(2) = ] [z, wydw =e™*¢ ﬂf zsec?(2mw)e BEQ@TWIF/2 1y, (6-146)
0 0

Let u = z tan(2mw) so that du = 2wz sec® (2w w) dw. Notice that as w varies from 0 to
1, u varies from —co to +oc. Using this in (6-146), we get

—0<z<oo (6-147)

1 2 2 du 1 3
Y % /2/ e H n_tt /2
1:(2) e . o P
_—
1

which represents a zero mean Gaussian random variable with unit variance. Thus
z ~ N(0, 1). Equation (6-141) can be used as a practical procedure to generate Gaussian
random variables from two independent uniformly distributed random sequences. <

> Let z = xy. Then with w = x the system xy = z, x = w has a single solution:
x| = w, y; = z/w. In this case, J (x, y) = —w and (6-115) yields

1 2
f:ZuJ(Zs w) = mfxy ('LU, E)
Hence the density of the random variable z = xy is given by

ﬂ(z):]mlllvf”( )dw

Special case: We now assume that the random variables x and y are independent
and each is uniform in the interval (0, 1). In this case, z < w and

for (0. 2) = frw) (=) =1

(6-148)
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FIGURE 6-25
so that (see Fig. 6-25)
Fonow) 1/w Dcz<w=<l 6
wlZ, W) = i
‘ 0 otherwise (6-149)
Thus
"1 —-lnz 0<z<l1
(z) = f —dw = 6-1
f: L W 0 elsewhere &0

<

} Let x and y be independent gamma random variables as in Example 6-12. Define
z =x+y and w = x/y. Show that z and w are independent random variables.

SOLUTION
Equations z = x | y and w = x/y generate one pair of solutions

- 7w oz
Tltw yl—]+w
Moreover
1 1 X+ 14+ w)?
J(x,y)=’ 5| 55 2}*:7( w)
l/y —x/y y z

Substituting these into (6-65) and (6-115) we get

1 z Zw m—1 z n—1 .
] vy - = fﬂ'
Jon(®®) = e T T ) A w)? (1+w> (1 +w> ¢

1 zm+nfl m—1

= = pE —w
"t T (m)I" (n) (1 4 w)ym+n
_ ( Zm+n—l euz/a) ' F(m _'_n) wm—l
a-ernl“(m + H) I“(m)l"(n) (] 4= w)ern )
=f@fw) z>0 w>0 (6-151)

showing that z and w are independent random variables. Notice that z ~ G(m + n, o)
and w represents the ratio of two independent gamma random variables. <

THE
STUDENT ¢
DISTRIBUTION
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P> A random variable z has a Student ¢ distribution® £ (n) with n degrees of freedom if
for —oo < z <00

AT = Vi = D@+ /2
e —— e

z (14 z2/n)n+! JEnT(n/2)

‘We shall show that if x and y are two independent random variables, x is N(0, 1), and y

: 2

is x“(n):

(6-152)

1 o
fix)= me—xzﬂ S(y) = W)}”/Z le yfo(y) (6-153)
then the random variable
X
- Jy/n

has at(n) distribution. Note that the Student ¢ distribution represents the ratio of a normal
random variable to the square root of an independent x? random variable divided by its
degrees of freedom.

SOLUTION
We introduce the random variable w = y and use (6-115) with

x=:c\/E y=w J’(z,w)z\/E or J(x,y)=\/?
n n w

This yields
w 1 2 w21
—_ _ —z°w/2n —w/2
foe) =\ 7=ty O
_ wn=0/2 e_*h(1+12/’r)/2U(w)
V2mn 2021 (n/2)
Integrating with respect to w after replacing w(1 + z2/n)/2 = u, we obtain
1 1
— n—-1)/2 ,—u d
f@ ST (n/2) (1 + z2/n)0+1/2 /0 * , ¢ %
_ T(n+1)/2) 1
T J/anT@®/2) (1 + z2/n)0th/2
1 il

= — 00 [ole8 6-154

JRBQ2 D (L + 2/ m)0 DT srmce OB
Forn = 1, (6-154) represents a Cauchy random variable. Notice that for each n, (6-154)
generates a different p.d.f. As n gets larger, the ¢ distribution tends towards the normal
distribution. In fact from (6-154)

(1 +22/n) D2 5 =22 a5 p > o0

For small n, the ¢ distributions have “fatter tails” compared to the normal distribution
because of its polynomial form. Like the normal distribution, Student ¢ distribution is
important in statistics and is often available in tabular form. <

2Student was the pseudonym of the English statistician W. S. Gosset, who first introduced this law in
empirical form (The probable error of a mean, Biometrica, 1908.) The first rigorous proof of this result was
published by R. A. Fisher.
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EXAMPLE 6-29

THE F DISTRI-
BUTION

} Let x and y be independent random variables such that x has a chi-square distribution
with m degrees of freedom and y has a chi-square distribution with n degrees of freedom,
Then the random variable

Fo Xm
y/n

is said to have an F distribution with (m, n) degrees of freedom. Show that the p.d.f. of
z = F is given by

(6-155)

T((m + n)/2)m™2pn2 /21 0
-
() = TC'(m/2)T(n/2) (n + mz)mtm)/2 z 6-156)
0 otherwise

SOLUTION
To compute the density of F, using (6-153) we note that the density of x/m is given by

m(mx)mﬂ—le—mx/z

fiw={ " Twmpwr  *7°
0 otherwise
and that of y/n by
n(ny)"/2-Le~m12
hoy={ Tapzr *7°
0 otherwise

Using (6-60) from Example 6-10, the density of z = F in (6-155) is given by

. _ 00 m(mzy)mﬂ—le—mzyﬂ n(ny)ﬂ/Z—l-eﬁny/Z
felz) _jo ¥ ( T (/22772 ) ( [ (/227 )d

2 00
_ (m/Z)m/ (n/2)n/2 szl‘l y(m+")/2,1ey(;;+mz)/2 d
T'(m/2)T (n/2)20m+n)/2 0 4

_ (m/z)mﬂ(n/z)nﬂ el m-+n 9 (m+n)/2
— T(m/2)T (n/2)20m+m/2 % 2 n+mz

T'((m + n)/2)m™?*n"/? /21
C(m/2)T(n/2)  (n+ mg)ntn/z

(m/n)" /2-1 -

— N m 1 (m-+m) /2 !
,B(m/Z,n/Z)z (1 +mz/n) z>0 (6-157)
and f,(z) = 0 for z < 0. The distribution in (6-157) is called Fisher’s variance ration
distribution. If m = 1 in (6-155), then from (6-154) and (6-157) we get F = [t(n)]%.
Thus F(1, n) and 2(n) have the same distribution. Moreover F (1, 1) = ¢2(1) represents

the square of a Cauchy random variable. Both Student’s ¢ distribution and Fisher’s F

distribution play key roles in statistical tests of significance. <

CHAPTER 6 TWO RANDOM VARIABLES 209

6-4 JOINT MOMENTS

Given two random variables x and y and a function g (x, ), we form the random variable
z = g(x,y). The expected value of this random variable is given by

Efd)= fm 2£.(2) dz | (6-158)

—00
However, as the next theorem shows, E{z} can be expressed directly in terms of the
function g(x, y) and the joint density f(x, y) of xand y.

b pleeyt= [ [ sy ydxay (6-159)

Proof. The proof is similar to the proof of (5-55). We denote by AD, the region of the xy plane
such that z < g(x, y) < z+dz. Thus to each differential in (6-158) there corresponds aregion AD,
in the xy plane. As dz covers the z axis, the regions AD, are not overlapping and they cover the
entire xy plane. Hence the integrals in (6-158) and (6-159) are equal.

We note that the expected value of g(x) can be determined either from (6-159) or
from (5-55) as a single integral

o0

E{g(x)}:/ / oln) fx, 3 dir dy= f G 0 2

This is consistent with the relationship (6-10) between marginal and joint densities.
If the random variables x and y are of discrete type taking the values x; and y
with probability p; as in (6-33), then

Elgxy}=>_Y 8 yopin (6-160)
i k

Linearity From (6-159) it follows that

E {Z g (X, y)} =Y aE{gaxy) (6-161)

k=1 k=1
This fundamental result will be used extensively.
We note in particular that
E{x+y} = E{x} + E{y} (6-162)

Thus the expected value of the sum of two random variables equals the sum of their
expected values. We should stress, however, that, in general,

E{xy} # E{x}E{y}

Frequency interpretation As in (5-51)
X(El) o Y(%]) +t X(En) +y(§n)

n
x() + -+ x(E) & y&) + - +yE)

E{x+y} >~

: n n
E{x} + E{y}

12




