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Abstract—A radio tomographic imaging (RTI) system uses
the received signal strength (RSS) measured by RF sensors in a
static wireless network to localize people in the deployment area,
without having them to carry or wear an electronic device. This
paper addresses the fact that small-scale changes in the position
and orientation of the antenna of each RF sensor can dramatically
affect imaging and localization performance of an RTI system.
However, the best placement for a sensor is unknown at the
time of deployment. Improving performance in a deployed RTI
system requires the deployer to iteratively “guess-and-retest”, i.e.,
pick a sensor to move and then re-run a calibration experiment
to determine if the localization performance had improved or
degraded. We present an RTI system of servo-nodes, RF sensors
equipped with servo motors which autonomously “dial it in”, i.e.,
change position and orientation to optimize the RSS on links of
the network. By doing so, the localization accuracy of the RTI
system is quickly improved, without requiring any calibration
experiment from the deployer. Experiments conducted in three
indoor environments demonstrate that the servo-nodes system
reduces localization error on average by 32% compared to a
standard RTI system composed of static RF sensors.

Keywords—Radio tomographic imaging, device-free localiza-
tion, RF sensors, multipath fading

I. INTRODUCTION

Radio tomographic imaging (RTI) systems [1], [2] localize
and track people in indoor areas using the received signal
strength (RSS) measurements made by a mesh network of
multiple static wireless transceivers. These devices are called
“RF sensors” because their RF interface is their mode of
sensing. Instead of requiring people to carry or wear an
electronic device (e.g., RFID tag, mobile phone, etc.), an
RTI system uses the changes in RSS on the network’s links
to estimate the attenuation field caused by the presence and
movements of people found in it. RTI systems can be used to
enable context awareness [3], [4], [5], [6], in ambient-assisted
living (AAL) and elder care applications [7], [8], [9], and in
tactical operations or crisis situations [10], [11].

An effect we have observed over many deployments in
real-world indoor environments is that the performance of an
RTI system can be dramatically altered (either improved or
degraded) by small (i.e., sub-wavelength) position changes
of the deployed RF sensors. Two RTI deployments in the
same area, with RF sensors deployed in ostensibly the same
positions, may have significantly different localization and
tracking performance. We show an example of how RTI
performance is improved by moving one sensor in Section
III-A.

Fig. 1. Rotating Servo-node Platform. The automated prototype used in this
work is composed of a TI CC2531 RF sensor, operating in the 2.4 GHz ISM
band, and a servo motor that can rotate one full turn (360 degrees). The RF
sensor is glued on a rigid cardboard disc having a 10 cm radius. The disc is in
turn glued on the winch of the servo motor. The sensor controls the position
of the servo motor through one of its I/O ports.

One may systematically improve the positions of the RF
sensors, and thus the performance of the RTI system, by a
long and tedius procedure we call “guess-and-retest”. First, RF
sensors are deployed so as to form links that cover uniformly
the monitored area. An experiment is then conducted with the
deployer moving along a known path, by which the tracking
error of the RTI system is calculated. Next, the deployer:

1) picks a sensor to be the sensor-under-test and changes
its position, moving it a few cm in one direction or
another.

2) re-performs the known-path experiment and recalcu-
lates the tracking error.

3) If the tracking error increases, the deployer moves
the sensor-under-test back to its original position.

4) Repeat from Step 1.

While the “guess-and-retest” procedure is possible and will ul-
timately reduce the localization error, it is extraordinarily time-
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consuming. Moreover, in highly dynamic indoor environments,
such as office spaces or apartments, the same procedure should
be periodically performed to re-adjust the positions of the RF
sensors. For these reasons, the “guess-and-retest” procedure is
unsuitable for a real-world deployment of a commercial RTI
system.

In this paper, we introduce an RTI system composed of a
network of autonomously rotating RF sensors, which we call
servo-nodes, shown in Figure 1. Each servo-node is equipped
with a servo motor and is capable of performing small-scale,
i.e., on the order of a wavelength, adjustments of the position
of the RF sensor. Further, we suggest and justify a simple,
network-wide quality metric which is based solely on link
channel measurements when no person is in the area, and
thus does not require the deployer to conduct any known-
path experiment. Together, the quality metric and the servo-
motor allow each sensor to quickly, i.e., within seconds, “dial
it in”, i.e., rotate to optimize its own position. We show via
three deployments that this procedure, which we refer to as
calibration, reduces the localization error by 30% to 37%.

The logic behind the proposed calibration procedure and
the key to the improvement in localization performance is in
the optimization of the links’ fade level, i.e., the degree to
which RSS is changed by constructive or destructive multipath
fading. If multipath components arrive at the receiver antenna
with nearly the same phase, the link is said to be in anti-fade,
and its RSS is relatively high. Alternatively, if components
have nearly opposite phase, a link is said to be in deep fade,
and its RSS is relatively low [12]. Since the phase of each
component changes at a different rate as the antenna is moved,
we observe the effect of small-scale fading [13].

Previous works [7], [12], [14], [15] have demonstrated that
the change in RSS induced by a person obstructing the link
line, i.e., the straight, imaginary line connecting transmitter
and receiver, strongly depends on the fade level of the link.
Anti-fade links measure a consistent attenuation only when the
person is located in the proximity of the link line. In contrast,
deep fade links measure a variation in RSS (either increase
or decrease) also when the person is located at unpredictable
positions far away from the link line. Thus, anti-fade links
provide generally more informative and reliable information
about a person’s position. We propose that maximizing the
sum of RSS measured on all links in empty-room conditions
will increase, on average, link fade levels, and thus improve
RTI tracking accuracy.

Servo-nodes do not move the RF sensors far enough to alter
large scale path loss on links. Thus, any increase in RSS at the
receiver can be attributed only to a change in small-scale fading
that makes the multipath phasor sum more constructive. With
the link multipath arranged to be more constructive, there is a
higher probability that the link will exhibit a more reliable and
predictable attenuation behavior when the person is actually
obstructing the link line. Therefore, increasing the links RSS
will improve the RTI system localization accuracy. Instead of
the “guess-and-retest” procedure, the deployer simply turns
on and deploys servo-nodes and leaves the room. The RF
sensors self-calibrate by rotating to a (local) optimum position.
Even better, the servo-nodes can periodically recalibrate their
positions to adjust to changing environmental conditions over
months and years.

We present results from three deployments, i.e., a typical
one bedroom apartment, a highly cluttered university labora-
tory, and a large office space. Preliminary experiments are
conducted in the apartment with a multi-node platform (see
Figure 2 and Section II-A1) that simulates the functioning
of a servo-node. The servo-nodes (see Figure 1 and Section
II-A2) are used in the subsequent (lab and office) deploy-
ments. We also describe two different calibration procedures
that iteratively adjust position and orientation of the servo-
nodes composing the RTI system. Both procedures aim at
increasing the overall RSS of the links of the network in
static conditions, so as to increase the number of anti-fade
links and consequently improve the localization accuracy. The
results of the deployments show that a system composed of
rotating RF sensors in random positions, i.e., with random
orientation, achieves a localization accuracy similar to the
one of a standard RTI system composed of static nodes all
with the same orientation. However, when the servo-nodes are
calibrated, the localization error is reduced on average by 30%
compared to a standard RTI system with the same number
of sensors. Alternatively, the calibrated servo-nodes system
achieves the same localization accuracy as a system composed
of standard sensors, but with 37% fewer sensors.

II. METHODS

In this section, we describe the multi-node platform and the
rotating servo-node used in the deployments, the procedures
applied to calibrate position and orientation of the RF sensors,
and the RTI method used to process the RSS measurements
collected in the experiments.

A. Hardware

1) Multi-node Platform: To conduct preliminary experi-
ments, we created a multi-node platform (see Figure 2) with
eight battery-powered RF sensors attached to a rigid cardboard
tile and positioned clockwise every 45 degrees along the
perimeter of a circle having a 10 cm radius. Each sensor of the
platform has different orientation. The platform was designed
to simulate the functioning of the rotating servo-nodes (see
Section II-A2), having an RF sensor in each of the eight
positions where the servo motor can position its own sensor.

2) Servo-nodes: The servo-nodes are composed of two
parts: the RF sensor, i.e., a TI CC2531 USB dongle [16],
and the servo motor, i.e., a GWS digital sail winch servo
[17]. The RF sensor operates in the 2.4 GHz ISM band. It
has a maximum nominal transmit power of 4.5 dBm and can
transmit on one of 16 selectable frequency channels, which
are 5 MHz apart, as specified by the IEEE 802.15.4 standard.
The servo motor can rotate one full turn (360 degrees) through
the standard 1-2 ms pulse width modulation (PWM). A rigid
cardboard circle, having a 10 cm radius, is glued to the winch
of the servo motor. The RF sensor is in turn attached to
the cardboard circle so that its antenna is perpendicular to
the surface of the circle. The CC2531 platform controls the
position of the servo motor through one of its I/O ports. We
programmed the nodes so to be able to rotate them to eight
different positions (p = {1, ..., 8}), 45 degrees apart.

The RF sensors collect RSS measurements on the selected
frequency channels by running the multi-Spin communication
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Fig. 2. Multi-node Platform. A prototype is built with eight battery-powered
RF sensors positioned clockwise every 45 degrees along the perimeter of a
circle having a 10 cm radius. Each sensor has different orientation.

protocol [7]. The packets broadcasted by the servo-nodes and
received at the central sink node include the RSS measure-
ments of the links of the network and indicate the current
position of the servo-nodes. multi-Spin reserves one slot at
the end of each TDMA communication cycle in order for the
sink node to communicate a new position to one of the servo-
nodes.

B. RF Sensors Calibration Procedures

We now introduce two different procedures to calibrate
the small-scale position and orientation of the RF sensors.
The first, which we refer to as incremental calibration, was
used with the multi-node platform for preliminary experiments
carried out in the one bedroom apartment. The second, which
we refer to as network calibration, was used with the servo-
nodes in experiments carried out in the laboratory and office
space.

1) Incremental Calibration: After positioning the first RF
sensor (i.e., #1 in Figure 4) in a pre-determined position and
orientation, the other RF sensors are calibrated and deployed
by applying the following iterative procedure:

1) Pick a spot in the monitored area to temporarily
deploy the multi-node platform. The spot is chosen
so as to maximize the length of the formed links
and cover the whole deployment area uniformly (e.g.,
one can sequentially use the four cardinal points as
a reference);

2) In static conditions, i.e., with no people in the de-
ployment area, measure for a short period of time
(e.g., 10 s) the RSS of all the links among the eight
RF sensors on the multi-node platform and the RF
sensors already calibrated and deployed.

3) For sensor p ∈ {1, ..., 8} on the multi-node platform,
calculate R̄p, i.e., the mean of the time-averaged RSS
in static conditions of all the links between p and the
other sensors d ∈ D already calibrated and deployed,
as:

R̄p =
1

|D|

1

|C|

∑

d∈D

∑

c∈C

(r̄(p,d),c + r̄(d,p),c), (1)

where C is the set of measured frequency channels
and |C| its cardinality.

4) Remove the multi-node platform and permanently
deploy the RF sensor with the highest value of R̄p

where it was located. Add the newly deployed sensor
to the set D. Then, add a new RF sensor to the multi-
node platform in place of the deployed one.

5) Repeat step 1) through 4).

2) Network Calibration: In the incremental calibration, the
RF sensors are calibrated and deployed one at a time. In the
network calibration, first, all the RF sensors composing the
system are deployed. With the servo motors in their default
position (p = 1), we measure for a short period of time (e.g., 10
s) the RSS of all the L links of the network in static conditions.
At the end of this period, we calculate R̄ as the mean of the
time-averaged RSS in static conditions of the L links of the
network on the frequency channels in C:

R̄ =
1

L

1

|C|

L
∑

l=1

∑

c∈C

r̄l,c. (2)

Starting from RF sensor #1, we apply to each RF sensor s of
the system the following calibration procedure:

1) Collect M RSS measurements (M = 10 in our tests)
for each link and frequency channel, i.e., collect RSS
measurements for the time interval corresponding to
M multi-Spin TDMA communication cycles.

2) Calculate and store R̄p
s , i.e., R̄ with the servo motor

of sensor s in position p.
3) While p ≤ 8, rotate sensor s to the next position and

repeat steps 1) and 2).
4) If max (R̄p

s) > R̄N , rotate sensor s to the correspond-
ing position p and set R̄ = max (R̄p

s). Otherwise,
rotate sensor s back to its original position, i.e., the
position sensor s had at the end of the last iteration
of the calibration procedure.

The calibration procedure is repeated until the rotating RF
sensors do not set into different positions compared to the
previous iteration, i.e., until R̄ does not increase anymore.
The iterative approach ensures that all possible permutations
of positions of the servo-nodes are evaluated before the servo-
nodes set in the final configuration, achieving the maximum
value of R̄.

For the largest system used in our experiments, composed
of 14 servo-nodes, the length of a multi-Spin TDMA commu-
nication cycle is approximately 200 milliseconds (the length
being proportional to the number of RF sensors). Thus, the
time required to collect 10 RSS measurements for each link
and frequency channel with the servo-motor in a specific
position is approximately 2 seconds. Overall, the calibration
of a servo-node takes approximately 15 seconds.
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(a) Simulation A (b) Simulation B

Fig. 3. The effect of sensors’ position. RTI images formed by an RTI system composed of 14 standard sensors deployed in a 54 m2 highly cluttered laboratory
at the University of Utah. In simulation A, sensor #9 is selected, and the localization error is 1.01 m. In simulation B, sensor #10 is selected, and the localization
error is 0.52 m. The two sensors are 20 cm apart. In the images, the white circle represents the true position of the person, the white cross the estimated position.

C. Radio Tomographic Imaging

In this section, we summarize the RTI method, introduced
in [15], used to process the RSS measurements collected in
the experiments. To the best of our knowledge, the method
in [15] is, to date, the RTI method achieving the highest
localization accuracy. By processing the data with this method,
we aim at demonstrating that a system composed of rotating
RF sensors can further enhance the localization accuracy of
RTI. While in this work we consider only the method in [15],
we expect similar improvements in localization accuracy by
using rotating RF sensors also with other RTI methods [18],
[14], [19].

An RTI system is composed of N RF sensors deployed
at known positions {xn, yn}n=1,...,N and communicating on a
set C of different frequency channels. At each time instant k,
the system measures the RSS rl,c(k) of link l on frequency
channel c ∈ C. By combining the RSS measurements collected
on all the L = N · (N − 1) links of the network on the
C selected frequency channels, the system estimates in real-
time the change in the propagation field of the monitored area
caused by people found in it.

During an initial training phase of the system, performed
when the deployment area is not occupied by people, we
measure the average RSS of each link on each measured
frequency channel. We denote this as r̄l,c. After the training
phase, we estimate the RSS attenuation of link l on channel c
at time instant k as:

∆rl,c(k) = rl,c(k)− r̄l,c. (3)

In RTI, the attenuation field to be estimated is discretized into
voxels. The attenuation of a link is assumed to be a spatial
integral of the RF propagation field of the monitored area.
Thus, for each link, the change in RSS is a linear combination
of the change in the attenuation of a subset of voxels, i.e., the

voxels within an ellipse having the transmitter and receiver of
the link at the foci.

While in previous works the width of the ellipse λ was set
to a fixed value for all the links of the network, the method
in [15] defines a different value λl for each link based on its
fade level [12]. The fade level of link l on channel c is defined
as:

Fl,c = r̄l,c − P (d, c), (4)

where P (d, c) is the theoretical RSS estimated by using the
log-distance path loss model [13], which depends on the
distance d between transmitter and receiver and on the center
frequency c. The path loss exponent η of the model is derived
after the initial calibration by applying linear least squares
fitting to the measured average RSS of all the links of the
network. After this, the fade level of the links on each selected
frequency is calculated as in (4).

As defined in [12], an anti-fade link-channel pair (l, c) has
positive fade level, while a deep fade one has negative fade
level. The characteristics of these two types of links have been
described in [12] and then modeled in [15]. The work in [12]
demonstrated that the sensitivity area of deep fade links is
larger than the one of anti-fade links. In addition, when a deep
fade link is obstructed, on average the measured RSS increases.
Instead, when an anti-fade link is obstructed, on average
the measured RSS decreases. The model described in [15]
determines for each link-channel pair (l, c) two parameters, λ+

and λ−, i.e., the width of the ellipse for a measured increase
(+) and decrease (−) in RSS, respectively, based on the fade
level. The value of λ− is considerably smaller for anti-fade
links than for deep fade links, as anti-fade links measure a
decrease in RSS only when the person is located in the close
proximity of the link line. Thus, anti-fade links provide higher
quality information for the purpose of device-free localization.
By calibrating the small-scale position of the servo-nodes, our
system increases the mean RSS of the links of the network,
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pushing the links towards an anti-fade like behavior, which in
turn increases the localization accuracy.

For each link-channel pair, based on the so determined λ+
l,c

and λ−
l,c, its fade level, and the magnitude of the change in RSS

calculated as in (3), the model in [15] derives the probabilities
p+l,c (for an increase in RSS) and p−l,c (for a decrease in RSS) of
the person being within the area defined by the corresponding
ellipse: the larger the change in RSS, the higher the probability.

When all the L links of the network are considered, the
change in the propagation field of the monitored area can be
estimated as:

y = Wx+ n, (5)

where y and n are the measurements and noise vectors and
x is the image to be estimated. The measurements vector
is composed of the probabilities p+l,c and p−l,c for each link-
channel pair of the network. The elements of the weight matrix
W, representing how the attenuation of the voxels affect the
RSS measurements of the links, are calculated as:

wδ
l,c,j =

{

1
Aδ

l,c

if dtxl,j + drxl,j < dl + λδ
l,c

0 otherwise
, (6)

where δ = {+,−} represents the sign of the change in RSS,
Aδ

l,c is the area of the ellipse, dtxl,j and drxl,j are the distances
from the center of voxel j to the transmitter and receiver,
respectively, and dl is the length of the link.

Since the number of links L is considerably smaller than
the number of voxels of the image, the estimation problem is
an ill-posed one, and regularization has to be applied. We use
a regularized least-squares approach [20]:

x̂ = Πy. (7)

The projection matrix Π is calculated as:

Π = (WTW +C−1
x σ2

N )
−1

WT , (8)

where σ2
N is the regularization parameter. The a priori covari-

ance matrix Cx is calculated by using an exponential spatial
decay:

[Cx]j,i = σ2
xe

−dj,i/δc , (9)

where σ2
x is the variance of voxel measurements, dj,i is the

distance between the center of voxel j and the center of voxel
i, and δc is the voxels’ correlation distance. The position of
a person found in the monitored area is estimated by finding
the coordinates of the voxel of the RTI image that has the
maximum value.

III. EXPERIMENTAL RESULTS

We now present results from three different deployments of
our system. In each deployment, we compare the performance
of the system composed of servo-nodes to a system composed
of standard RF sensors, i.e., static sensors all having the same
orientation. To make a fair comparison of the performance
of the two systems, two standard RF sensors are positioned in
the proximity of each servo-node, one on each side, at distance
d ≤ 20 cm from the winch of the servo motor. By so doing, we
are ensuring that the links among the nodes of both systems
cover the deployment area approximately in the same way, and
that the differences in localization accuracy do not originate
from the nodes being positioned at different locations.

Fig. 4. Floor map of the one bedroom apartment where preliminary
experiments were carried out. The yellow stars represent the RF sensors
calibrated with the multi-node platform. The black dots represent the standard
RF sensors (all having the same orientation).

A. Effect of Sensors Position on RTI

First, we show how small-scale changes in the position of
RF sensors affect the imaging and localization performance
of an RTI system. We perform two different simulations by
using the same RSS measurements collected with the standard
nodes during a test in a 54 m2 highly cluttered laboratory at
the University of Utah (see Figure 6(a)). For both simulations
(A and B), we select 14 of the 28 deployed standard RF
sensors (i.e., one for each of the 14 deployed servo-nodes).
13 of the selected 14 standard sensors are the same in both
simulations. However, in simulation A, we select sensor #9,
while in simulation B we select sensor #10. These two sensors
are 20 cm apart. Figure 3 shows the RTI images formed in
simulation A and B when the person is located at coordinates
(5.13, 4.57) m. The localization error of simulation A is 1.01
m, while the error of simulation B is 0.52 m.

B. Preliminary Experiments

Preliminary experiments were conducted in a 56 m2 one
bedroom apartment (with floor map shown in Figure 4). We
calibrated and deployed 13 RF sensors by using the multi-
node platform described in Section II-A1 and the incremental
procedure described in Section II-B1. We also deployed 26
standard sensors, i.e., sensors having the same orientation. For
the standard sensors, we chose positions in the proximities of
the spots selected for the sensors calibrated with the multi-
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(a) Laboratory at the University of Utah (b) Office space at the University of Utah

Fig. 6. Servo-nodes deployments: in (a), the 54 m2 laboratory. In (b), the 100 m2 office space.
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Fig. 5. Results of the experiments in a 56 m2 one bedroom apartment. On
the left, the RMSE of the system composed of 13 sensors calibrated with
the multi-node platform is compared to the RMSE measured with different
subsets of 13 standard sensors. On the right, the RMSE measured with a
varying number of standard nodes. The horizontal line represents the RMSE
measured with 13 sensors calibrated with the multi-node platform.

node platform. All the RF sensors were deployed at approx-
imately 1.2 m from the floor. Both systems, i.e., calibrated
and standard, were communicating on the same frequency
channels (C = {11, 16, 21, 26}). The apartment was located in
an area of the building with multiple coexisting Wi-Fi networks
(belonging to residents of the neighboring apartments).

To evaluate the localization accuracy, we marked 45 points
on the floor of the apartment. These points represented the true
position of the person to be localized during a test. We asked
the person to stand still at each of these locations for 8 s. In
this work, in order to provide a more reliable comparison of
the performance of the rotating and standard RTI systems, we
consider only the accuracy in localizing a stationary person.
However, the methods and systems presented in this work can
also be used to localize and track a moving person.

Figure 5 shows the box plot of the results of five different
tests conducted in the one bedroom apartment. In each test,

the person stood in the 45 evaluation points with different
orientations of her body. With the 13 sensors calibrated with
the multi-node platform, the median root mean squared error
(RMSE) is 0.39 m. For each test, we create 30 different subsets
of 13 standard sensors by selecting, for each calibrated sensor,
one of the two neighboring standard sensors. By so doing,
we ensure that the links connecting the selected sensors cover
the deployment area uniformly. Simulations are performed by
using the data collected during the tests. The median RMSE
of the resulting 150 simulations is 0.62 m. Thus, the system
composed of calibrated RF sensors reduces the localization
error by 37% compared to a standard system composed of
sensors all having the same orientation.

We also perform simulations by increasing the number of
sensors composing the standard RTI system. For each test, we
create 30 different subsets of standard sensors. In this case,
sensors are chosen randomly. The results of the simulations
show that the median RMSE decreases with a larger number
of sensors. With 19 standard sensors, the median RMSE is
0.39 m, i.e., the same as the median RMSE obtained with
13 calibrated sensors. Thus, by calibrating and deploying the
sensors using the multi-node platform, we are able to achieve
the same localization accuracy by using 32% fewer sensors.

C. Servo-nodes Deployments

In this section, we present the results of two deployments in
which we used the servo-nodes described in Section II-A2 and
the network calibration procedure described in Section II-B2.

First, experiments were carried out in a 54 m2 highly
cluttered laboratory at the University of Utah (see Figure
6(a)). We deployed 14 servo-nodes. We also deployed two
standard RF sensors in the proximity of each servo-node, one
on each side, at a 20 cm distance from the winch of the servo
motor. In this deployment, the set of used frequency channels
C = {15, 20, 25, 26}, in order to minimize the interference
with multiple coexisting WiFi networks.

To evaluate the localization accuracy, we marked 32 points
on the floor. The points were chosen so as to cover all the areas
of the laboratory. First, we carried out 10 tests by having the 14
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Fig. 7. Results of the two servo-nodes deployments. In both deployments, the
RMSE decreases after each iteration of the network calibration procedure. In
the laboratory (blue line), the RMSE with the servo-nodes in default position
(p = 1) is 0.60 m. After the third and final iteration, the RMSE is 0.43 m. In
the office space (red dashed line), the RMSE with the servo-nodes in default
position is 0.70 m. After the fourth and final iteration, the RMSE is 0.52 m.
By calibrating the RF sensors, we achieve a 30% reduction of the localization
error in both deployments.

servo-nodes positioned in 10 different permutations of random
positions. The mean RMSE of these tests was 0.59 m. Then,
for each test, we created 10 different subsets of 14 standard
sensors by selecting, for each servo-node, one of the two
neighboring standard sensors. The mean RMSE of the resulting
100 simulations was 0.61 m. Simulations were performed by
using the same RSS measurements collected during the tests.
These results demonstrate that the RTI system composed of
servo-nodes, when these are not calibrated, achieves on average
a localization accuracy very similar to the one achieved by a
standard RTI system.

Subsequently, we applied the network calibration procedure
to the servo-nodes. Figure 7 shows the mean RMSE of three
different tests performed after each iteration of the calibration
procedure. After the first iteration, the mean RMSE is 0.51 m,
i.e., a 16% reduction of the localization error achieved with the
standard sensors. After the second iteration, the mean RMSE is
0.46 m, i.e., a 25% reduction. After the third and final iteration,
the mean RMSE is 0.43 m, i.e., a 30% reduction.

Additional experiments were carried out in a 100 m2 office
space at the University of Utah (see Figure 6(b)). We deployed
12 servo-nodes (3 on each side of the space) and 24 standard
sensors (two in the proximity of each servo-node, one per
side). The nodes density of this deployment (0.12 nodes/m2)
was considerably lower than in other previous works that use
RTI methods and low-power sensors operating in the 2.4 GHz
ISM band: for example, in [15], [12], [14], [3], [5], the nodes
density assumed values at least four times higher. In this
deployment, the nodes communicated on frequency channels
C = {15, 20, 25, 26}.

To evaluate the localization accuracy of both RTI systems,
we marked 23 points on the floor of the office space. First,
we carried out 8 tests by having the 12 servo-nodes positioned
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Fig. 8. RMSE measured with a varying number of standard sensors in a
100 m2 office space at the University of Utah. The horizontal dashed line
represents the RMSE measured with 12 servo-nodes after the fourth and final
iteration of the calibration procedure.

in 8 different permutations of random positions. The mean
RMSE of these tests was 0.72 m. For each test, we created 10
different subsets of 12 standard sensors by selecting, for each
servo-node, one of the two neighboring standard sensors. The
mean RMSE of the resulting 80 simulations was 0.74 m. The
simulations were performed by using the RSS measurements
collected during the tests. Also in this deployment, the system
composed of servo-nodes in random positions and the system
composed of standard sensors have very similar localization
accuracy.

Figure 7 shows the mean RMSE of three different tests
performed after each iteration of the network calibration pro-
cedure. The RMSE is 0.62 m after the first iteration, i.e., a 16%
reduction of the localization error achieved with the standard
sensors, 0.59 m after the second iteration, i.e., a 20% reduction,
0.53 m after the third iteration, i.e., a 28% reduction, and 0.52
m after the fourth and final iteration, i.e., a 30% reduction.

Figure 8 shows the results of simulations performed by
increasing the number of sensors composing the standard RTI
system. We create 150 different subsets of standard sensors for
each number of standard nodes. Sensors are chosen randomly.
The median RMSE decreases with a higher number of sensors.
With 21 standard sensors, the mean RMSE is 0.52 m, i.e., the
same mean RMSE measured with 12 calibrated servo-nodes.
Thus, the RTI system composed of servo-nodes achieves the
same accuracy by using 43% fewer sensors. The results of the
three deployments are summarized in Table I.

D. Position Distribution

Does the calibrated position, i.e., the position at which the
servo-nodes are set to after the calibration procedure, have a
bias to one direction or another? If so, we might suspect that a
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TABLE I. SUMMARY OF THE RESULTS

RMSE [m]

Deployment Area [m2] # of Nodes
Standard
Sensors

Servo-nodes
Random Pos.

Servo-nodes
Default Pos.

Calibrated
Positions Improvement

Apartment 56 13 0.62 0.39 37%

Laboratory 54 14 0.61 0.59 0.60 0.43 30%

Office space 100 12 0.74 0.72 0.70 0.52 30%

Average: 32%
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Fig. 9. Distribution of the calibrated positions of the RF sensors in the three
deployments.

certain orientation is better because of the antenna polarization,
or that a certain orientation results in a beneficial antenna gain
pattern. Alternatively, if the highest position (#5 for our servo-
nodes) ends up being chosen more often, we might suspect
that the increase in antenna height is really to credit for the
improvements in RTI performance.

To address these questions, we plot the histogram of the
calibrated positions across all three deployments. In Figure 9,
we consider the calibrated positions of the multi-node platform
used in the one bedroom apartment, and the final positions of
the servo-nodes in the laboratory (i.e., after the third iteration)
and office space (i.e., after the fourth iteration). We consider
a total of 38 calibrated positions: 13, 14, and 12 nodes in the
apartment, laboratory, and office space, respectively. The first
node in the apartment is fixed.

The histogram in Figure 9 does not show any particular
bias in any direction. The maximum in the histogram is 8,
at positions #4 and #7. If it is true that the eight positions
are equally likely (our null hypothesis), using the multinomial
distribution [21], we find that 86.9% of the time all of the
positions will have eight or less occurrences. Thus, having 8
occurrences of a particular position in our experiments is not
evidence to reject the equally likely positions hypothesis, and
thus, we see no position bias.

IV. RELATED WORK

Over the last few years, RTI has quickly become one
of the most popular techniques of device-free localization.
However, other RSS-based techniques have also proven to be

feasible and accurate. The work in [22] introduced device-free
passive (DfP) localization, which leverages typical wireless
data network deployments and off-the-shelf wireless cards.
This technique has been used to localize and track multiple
people in cluttered [23] and in large [24] indoor environments.

Fingerprinting methods have been used in [4], [25] to
estimate in which cells people are located. The work in [25]
uses probabilistic methods based on discriminant analysis.
However, these methods require a long calibration period, i.e.,
15 to 30 minutes. Other works have specifically addressed
this issue, aiming at creating a localization system that would
not require an extensive training phase to be carried out in
static conditions. The work in [26] uses background subtrac-
tion methods typical of machine vision to estimate baseline
RSS values from measurements collected while the system is
already in use and people may be located in the monitored area.
In the context of RTI, the work in [3] applied a low-pass filter
to the RSS measurements of the links of the network in order to
adapt the baseline RSS to the changes in the environment and
make the system able to provide accurate position estimates
in the long-run in a domestic environment. Our work demon-
strates the effect of small-scale position changes of RF sensors
on the performance of an RTI system. The rotating servo-nodes
and the fade level optimization procedures we present allow
setting RF sensors to positions that improve the quality of
the links’ RSS measurements. Moreover, through the servo-
motors these positions can be quickly adjusted whenever the
conditions of the monitored environment change. Servo-nodes
and fade level optimization may be useful not only in RTI but
also in fingerprinting methods.

Other systems use the time-of-flight (ToF) of radio signals
to perform the localization task. The work in [27] exploits the
fact that, similar to the RSS, also the ToF of radio signals
is affected by a person obstructing the link line. Thus, ToF
measurements are used to form RTI images and localize the
person in the monitored area. The system in [28] consists of
a single device with one antenna for transmission and three
for reception. The device transmits a radio signal and then
measures the ToF of the signals reflected by the person’s body.
A geometric reference model is then used to map the ToF
measurements of the receiving antennas to the position of the
person.

V. CONCLUSION

The small-scale position of RF sensors significantly affects
the performance of an RTI system. A “good” position for each
sensor can not be known a priori. In this paper, we present an
RTI system composed of servo-controlled RF sensors which
rotate in a 10 cm radius. Each sensor in the network rotates,
iteratively, and adjusts its small-scale position to increase
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the average RSS measured on links network-wide. By so
doing, the average link fade level is increased, improving
the RTI estimates. This automated position calibration, which
we refer to as “dialing it in”, does not require any known-
path experimentation from the deployer and occurs within
seconds. We demonstrate the system in three experimental
deployments and show that it can reduce localization error
by over 30% compared to a standard system based on naı̈ve
sensor placement. In future work, we will consider using a
platform with multiple, electrically switchable antennas, such
as the prototype in [29]. The calibration procedure presented
in this work can be applied to select for each RF sensor the
antenna improving the quality of the links’ RSS measurements.
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