Watching Traffic for an Anomaly: Data Visualization using Dimensionality Reduction

Neal Patwari, Alfred O. Hero III, Adam Pacholski
University of Michigan, Ann Arbor MI, USA
Dept. of Electrical Engineering and Computer Science
http://www.engin.umich.edu/~npatwari

Workshop on Internet Signal Processing
November 11, 2004
Problem Formulation

- ‘Bad’ events change traffic over space & time
 - How do you see spatial & temporal characteristics?
- Motivation: Watch changing correlations over space
 - Map the routers based on traffic data ‘closeness’
 - Very close routers = very high correlation
- Goals:
 1. Show dramatic changes in correlation
 2. Show ‘where’ to look in an anomaly
Traffic Measurements

- From NetFlow, aggregate traffic in $\Delta=5$ min intervals
 - Total Packets, Flows or Octets
 - By Port/Protocol (eg. top few appls.)
 - By Source or Destn AS
 → Multidim. vector meas’t possible at each router, time

Abilene backbone network: 11 routers

Total packets at each router over time for 11 June ‘04

Each plot could be subdivided by port/protocols, source or destination AS
Approach and Methodology

1. Filter traffic data to remove running mean

 \[y(k) \quad + \quad \tilde{y}(k) \quad + \quad \text{Median of past } s \text{ samples} \]

 Calculate distances \(\hat{D}_{i,j} \) between each pair \(i,j \) over past \(\tau \) samples

2. Estimate distances using \(L_2 \) norm (\(\tau \) past):

 \[\hat{D}_{i,j}^2 = \sum_{t=k-\tau+1}^{k} \left\| \tilde{y}_i(t) - \tilde{y}_j(t) \right\|^2 \]

 Or another decreasing fcn of the correlation
3. Pick non-zero weights $w_{i,j}$ for K nearest-neighbors:

$$e^{-\gamma \hat{D}_{i,j}}$$

4. Find coordinates $\{z_k\}_k$ which minimize the weighted cost function:

$$\arg \min_{\{z_i\}} \left\{ \sum_{i,j} w_{i,j} \left(\|z_i - z_j\| - \hat{D}_{i,j} \right)^2 + \sum_k r_k \|z_k - \bar{z}_k\|^2 \right\}$$

- Distributed, Weighted Multidimensional Scaling (dwMDS)
 - Localized data sharing
 - Weights distances according to expected accuracy
 - Distributed minimization
 - Majorization method guarantees improvement at each round

Example Prior on coordinates: equal-distance links
Preliminary Results

- June 11, 2004: For \(\tau = 288 \) data plotted previously

- MDS-generated map

- dwMDS-generated map

\[(r = 0, K = 5, w_{ij} = 1) \]

MDS overly weights long-range distances
Validation

- Video of 6 – 12 June ’04
 - 16 hour memory (200-dim vectors)
 - New map estimated each 20 minutes
Next Steps

- Apply to larger networks
 - Test K-nearest-neighbors, distributed calculation
- Use higher-dimensional data
 - Visualization becomes more important as dim. Increases
 - Change in distribution of traffic will affect map
 - Eg: Flows, Octets, and Packets
 - Eg: Top n Applications (like FlowScan)
 - Eg: Source/Dest AS
 - Eg: Link data or OD-flow data vs. router data
 - Use Transformed Data (Wavelet, Spectral, …)
- Verify vs. known anomalies
- Implement in real-time web Applet
Space-Time Visualization Applet

Plan: Implement the dynamic correlation-map in an accessible, multifunction visualization tool.

http://www.eecs.umich.edu/~apachols/VisualizationApplet.htm

Try it!
Network Visualization

- Skitter plot - CAIDA
 - Global net connectivity

- FlowScan, D. Plonka [1]
 - Traffic / type / time