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Sensor Localization in Large Scale Apps

1000s to millions of devices
Device cost is 1st priority (10¢)
Range measurement can add 
cost, consume energy
Sensor data is recorded anyway 
– can it be used for localization?
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Data from a Space-Time Sensor Field

Ex: Average daily temp; Soil moisture & chemistry
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Record data at 
sensors 1…N
Keep time history 
from 1..τ
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Sensor Data Location Space

Physical Location 
Space
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Sensor Data 
Location Space

Example:  τ = 3

Data vectors       serve as a ‘location’ in a τ-dim space
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Estimation Problem Statement

Estimate:
Coordinates of n unknown-location devices:

Given:
a priori known coordinates of m devices:

Sensor measurements:
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Sensor Data Assumptions 

1) Dense Deployment of sensors in space
2) Neighborhood Preserving:  

Neighboring sensor data vectors in      
correspond to neighboring sensors in   

3) Local Linearity:  
Sensor data         within some ε neighborhood 
lie approximately in a linear subspace of
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Summary:  Manifold Assumption

Sensor data is close to a non-linear manifold
A twisted, curved, folded sensor location map 
(plus errors) within 

Equivalently,     a smooth function                   
s.t.

(       is additive noise)
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Localization is Functional Analysis

What if g(·) was linear?
Multi-Dimensional Scaling 
(MDS)
Finds least-squares solution
Within rotation, mirroring zi

g(zi)

Pros:
Optimization by eigendecomposition
Not prone to local maxima

Reality:  
Sensor data vectors aren’t linear in the 
physical coordinates
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Isomap Algorithm

Intuition:  Don’t use long distances in 
Find K nearest neighbors of each point

Find shortest path using only neighbors
Sum Euclidean distances along shortest path for ‘distance 
between non-neighbors’

Use MDS on shortest path distances
Eigendecomposition of a dense matrix: O(N3)

Eg:  Data points lie in    , 
but on a ‘Swiss roll’ [1]

[1] J.B. Tenenbaum, V. de Silva, J.C. Langford “A Global 
Geometric Framework for Nonlinear Dimensionality 
Reduction”  Science, 22 Dec 2000.
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Other Methods: LLE and Hessian LLE 

Locally Linear Embedding (LLE) [2]
Reconstruct local areas using global coords

Hessian-based LLE (HLLE) [3]
Take into account the local curvature

Intuition:  Consider similarity, not difference
Weight similarity of K nearest neighbors (others are 0)

Weight matrices are sparse & symmetric
Calculate d+1 eigenvectors w/ smallest eigenvalues

[2] S.T. Roweis and L.K. Saul, “Nonlinear Dimensionality Reduction by Local Linear Embedding”  
Science, 22 Dec 2000.

[3] D.L. Donoho and C. Grimes, “Hessian eigenmaps: locally linear embedding techniques for high-
dimensional data,” Publ. Nat. Academy of Science, May 13, 2003
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LLE Allows Distributed Algorithms
Calculation of local linear weights is local
Distributed algs. exist to calc. extremal eigenvectors

[4] E. R. Davidson, “The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding 
Eigenvectors of Large Real-Symmetric Matrices”, J. Comput. Phys. 14(1), pp 87-94, Jan. 1975

[5] Luca Bergamaschi and Giorgio Pini and Flavio Sartoretto, “Computational experience with 
sequential and parallel,preconditioned Jacobi–Davidson for large, sparse symmetric matrices”, J. 
Comput. Phys., 188(1), pp. 318-331, June 2003.

Figure:  Weight matrix for 7 by 7 grid example 
using LLE algorithm

Davidson method, extensions [4]
Data distribution techniques [5]
Block-Jacobi preconditioning [5]

Adapted for hierarchical networks
Complexity: O(KN2)
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Random Field Model for Simulation
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Sense data from a spatially correlated random field
We use:  Gaussian w/ exponential covariance:

Note: Isotropic Model
is a fcn of distance

are indep.

where
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4 reference devices
45 blindfolded devices
200 time samples / sensor
Calculate 

Example: 7 by 7 Grid of Devices

Blindfolded Device

Reference Device

d

x

y

m1=d
x

y

Rotate (flip)       to match 
known reference locations
Run 100 trials per estimator

Known 
reference 
locations

Figure:  Actual device locations 
in the 7 by 7 grid example
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Isomap & LLE Performance in Grid Eg.
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Both show bias
LLE variance near CRBEstimatorCRB

1-σ uncertainty ellipses Actual Location
Estimator Mean

Reference Device

Key:
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HLLE Performance in Grid, Grid+Noise

Removes bias in grid case
Same variance vs. LLE

Small bias in grid+error case
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Performance in Random Deployment

LLE & Isomap bias is 
unacceptably high
HLLE variance increases

HLLE Isomap

EstimatorCRB
1-σ uncertainty ellipses Actual Location

Estimator Mean
Reference Device
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Recent Developments

Cause of robustness issue:
Asymmetry of k-nearest-neighbors relation
Example:

Assign 3 n.n. to devices a-e.  Although ‘a’ has 8 
neighbors, it is no one else’s neighbor!

Having no devices consider you a nearest 
neighbor causes 0 eigenvalue in HLLE

a b
c

d

e
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K-Nearest-Neighbors Adjustment

Robust approaches for neighbor selection:
1) Enforce symmetry: Include another device if 

it includes you.
Tends to include distant neighbors 
Negative influence in accuracy (even when avg. 
# neighbors is kept constant)

2) Take pity:  Include another device if less than 
kmin others do & you are the next-closest.

Choice of kmin can be << k (we use kmin=3)
Negligible impact on accuracy, since it rarely 
changes the connectivity
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Current and Future Research

Acoustic sensor network 
measurements 

Measurements of 
background noises over 
time
Future:  To what extent 
are sensor fields 
isotropic?
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Current and Future Research

Biasing Effect of Neighborhood Selection

When distances are r.v.’s, selecting the          
k-nearest neighbors produces a biased 
sample
Future: Strategies for bias removal
Future: Analysis of manifold learning in noise

noise

Select k
smallest

||zi - zj|| ∀j k-nearest 
neighbors
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Current and Future Research

Applying Weighted Least Squares
Isomap, MDS currently solve an identically-
weighted LS problem
Shorter distances tend to be more accurate
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Conclusions 

Use sensor data to estimate sensor location
(Instead of / In addition to) Measured ranges

Benefits of Manifold Learning Algorithms
Can be distributed
Not model-based
Optimization is non-iterative (finds a global 
optimum)
O(KN2), or O(KN) at each sensor


