#### Manifold Learning Algorithms for Localization in Wireless Sensor Networks

Neal Patwari and Alfred O. Hero III University of Michigan Dept. of Electrical Engineering & Computer Science <u>http://www.engin.umich.edu/~npatwari</u>

> ICASSP'04 Presentation May 19, 2004

### Sensor Localization in Large Scale Apps



- 1000s to millions of devices
- Device cost is 1<sup>st</sup> priority (10¢)
- Range measurement can add cost, consume energy
- Sensor data is recorded anyway
  - can it be used for localization?





# Outline of Presentation

- Sensor Data is High-Dimensional Location
- Manifold Learning for Sensor Localization
- Simulation Experiments
  - Random Field Model
  - Results
- Current and Future Work

# Data from a Space-Time Sensor Field

#### Ex: Average daily temp; Soil moisture & chemistry



- Record data at
  - sensors 1...N
- Keep time history from 1..τ



## Estimation Problem Statement

#### Estimate:

• Coordinates of *n* unknown-location devices:  $\theta = [\mathbf{z}_1^T, \dots, \mathbf{z}_n^T]$ 

Given:

• *a priori* known coordinates of *m* devices:  $\{\mathbf{z}_i\}_{i=n+1}^N$   $\mathbf{z}_i = [x_i, y_i]^T$  N = n + m

Sensor measurements:

 $W = [\mathbf{w}_1, \dots, \mathbf{w}_N] \qquad \mathbf{w}_i \in \mathbb{R}^{\tau}$ 

# Sensor Data Assumptions

- 1) Dense Deployment of sensors in space
- 2) Neighborhood Preserving:
  - Neighboring sensor data vectors in  $\mathbb{R}^{\tau}$  correspond to neighboring sensors in  $\mathbb{R}^2$
- 3) Local Linearity:
  - Sensor data  $\{\mathbf{w}_i\}$  within some  $\varepsilon$  neighborhood lie approximately in a linear subspace of  $\mathbb{R}^{\mathcal{T}}$

## Summary: Manifold Assumption

- Sensor data is close to a non-linear manifold
  - A twisted, curved, folded sensor location map (plus errors) within  $\mathbb{R}^{\tau}$

• Equivalently,  $\exists$  a smooth function  $g : \mathbb{R}^2 \to \mathbb{R}^\tau$ s.t.  $\mathbf{w}_i = g(\mathbf{z}_i) + \eta_i$  ( $\eta_i$  is additive noise)



- Sensor Data is High-Dimensional Location
- Manifold Learning for Sensor Localization
- Simulation Experiments
  - Random Field Model
  - Results
- Current and Future Work

#### Localization is Functional Analysis

- What if  $g(\cdot)$  was linear?
  - Multi-Dimensional Scaling (MDS)
  - Finds least-squares solution
  - Within rotation, mirroring
- Pros:



- Optimization by eigendecomposition
- Not prone to local maxima
- Reality:
  - Sensor data vectors aren't linear in the physical coordinates









Eg: Data points lie in  $\mathbb{R}^{7}$ , but on a 'Swiss roll' [1] 1] J.B. Tenenbaum, V. de Silva, J.C. Langford "A Global Geometric Framework for Nonlinear Dimensionality Reduction" *Science*, 22 Dec 2000.

C

- Intuition: Don't use long distances in  $\mathbb{R}^{ au}$ 
  - Find *K* nearest neighbors of each point
- Find shortest path using only neighbors
  - Sum Euclidean distances along shortest path for 'distance between non-neighbors'
- Use MDS on shortest path distances
  - Eigendecomposition of a dense matrix: O(N<sup>3</sup>)

May 19, 2004

#### Other Methods: LLE and Hessian LLE

- Locally Linear Embedding (LLE) [2]
  - Reconstruct local areas using global coords
- Hessian-based LLE (HLLE) [3]
  - Take into account the local curvature
- Intuition: Consider similarity, not difference
- Weight similarity of K nearest neighbors (others are 0)
  - Weight matrices are sparse & symmetric
  - Calculate d+1 eigenvectors w/ smallest eigenvalues

- [2] S.T. Roweis and L.K. Saul, "Nonlinear Dimensionality Reduction by Local Linear Embedding" *Science*, 22 Dec 2000.
- [3] D.L. Donoho and C. Grimes, "Hessian eigenmaps: locally linear embedding techniques for highdimensional data," Publ. Nat. Academy of Science, May 13, 2003

May 19, 2004

# LLE Allows Distributed Algorithms

- Calculation of local linear weights is local
- Distributed algs. exist to calc. extremal eigenvectors



- Davidson method, extensions [4]
- Data distribution techniques [5]
- Block-Jacobi preconditioning [5]

Adapted for hierarchical networks Complexity: O(*KN*<sup>2</sup>)

**Figure**: Weight matrix for 7 by 7 grid example using LLE algorithm

- [4] E. R. Davidson, "The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices", *J. Comput. Phys.* 14(1), pp 87-94, Jan. 1975
- [5] Luca Bergamaschi and Giorgio Pini and Flavio Sartoretto, "Computational experience with sequential and parallel,preconditioned Jacobi–Davidson for large, sparse symmetric matrices", *J. Comput. Phys.*, 188(1), pp. 318-331, June 2003.

May 19, 2004



- Sensor Data is High-Dimensional Location
- Manifold Learning for Sensor Localization
- Simulation Experiments
  - Random Field Model
  - Results
- Current and Future Work

## Random Field Model for Simulation

- Sense data from a spatially correlated random field
- We use: Gaussian w/ exponential covariance:

 $\mathbf{w}(t) \sim \mathcal{N}\left(\mu, R(\theta)\right)$  where  $\mathbf{w}(t) = [\mathbf{w}_1(t), \dots, \mathbf{w}_N(t)]^T$ 

$$[R(\theta)]_{i,j} = \sigma^2 \exp\left[-\left(\|\mathbf{z}_i - \mathbf{z}_j\|/\delta\right)^{\alpha}\right]$$





Note: Isotropic Model
 R(θ) is a fcn of distance

$$\{\mathbf{w}(t)\}_{t=1...\tau} \text{ are indep.}$$

## Example: 7 by 7 Grid of Devices



Figure: Actual device locations in the 7 by 7 grid example

- 4 reference devices
- 45 blindfolded devices
- 200 time samples / sensor
- **Calculate**  $\tilde{X}$



- Rotate (flip) X to match known reference locations
  Run 100 trials per estimator

#### Isomap & LLE Performance in Grid Eg.



May 19, 2004









- Cause of robustness issue:
  - Asymmetry of k-nearest-neighbors relation
  - Example:



- Assign 3 n.n. to devices *a-e*. Although '*a*' has 8 neighbors, it is no one else's neighbor!
- Having no devices consider you a nearest neighbor causes 0 eigenvalue in HLLE

#### K-Nearest-Neighbors Adjustment

- Robust approaches for neighbor selection:
  - 1) Enforce symmetry: Include another device if it includes you.
    - Tends to include distant neighbors
    - Negative influence in accuracy (even when avg. # neighbors is kept constant)
  - 2) Take pity: Include another device if less than  $k_{min}$  others do & you are the next-closest.
    - Choice of  $k_{min}$  can be << k (we use  $k_{min}=3$ )
    - Negligible impact on accuracy, since it rarely changes the connectivity

# Outline of Presentation

- Sensor Data is High-Dimensional Location
- Manifold Learning for Sensor Localization
- Simulation Experiments
  - Random Field Model
  - Results
- Current and Future Work

## Current and Future Research

- Acoustic sensor network measurements
  - Measurements of background noises over time
  - Future: To what extent are sensor fields isotropic?





# Current and Future Research

#### Biasing Effect of Neighborhood Selection



When distances are r.v.'s, selecting the k-nearest neighbors produces a biased sample

- Future: Strategies for bias removal
- Future: Analysis of manifold learning in noise

# Current and Future Research

- Applying Weighted Least Squares
  - Isomap, MDS currently solve an identicallyweighted LS problem
  - Shorter distances tend to be more accurate



- Use sensor data to estimate sensor location
  - (Instead of / In addition to) Measured ranges
- Benefits of Manifold Learning Algorithms
  - Can be distributed
  - Not model-based
  - Optimization is non-iterative (finds a global optimum)
  - $O(KN^2)$ , or O(KN) at each sensor