1. Fill in the blanks in the circuits below and on the next page. You may neglect the base bias current (I_B).

a)

\[
\begin{align*}
I_C &= \\
V_{CC} &= \\
V_B &= 3.1 \text{ V} \\
V_C &= 7.4 \text{ V} \\
V_{CE} &= \\
V_E &= \\
R_C &= 3 \text{ k}\Omega \\
R_E &= 2 \text{ k}\Omega \\
\end{align*}
\]

b)

\[
\begin{align*}
R_1 &= 130 \text{ k}\Omega \\
I_C &= 4 \text{ mA} \\
V_{CC} &= \\
V_C &= \\
V_{CE} &= 6.3 \text{ V} \\
V_E &= \\
R_C &= \\
R_E &= \\
V_B &= \\
I_{R2} &= 0.12 \text{ mA} \\
R_2 &= 20 \text{ k}\Omega \\
\end{align*}
\]

c)

\[
\begin{align*}
R_1 &= \\
I_C &= 5 \text{ mA} \\
V_{CC} &= 12 \text{ V} \\
V_C &= 9 \text{ V} \\
V_{CE} &= \\
V_E &= \\
R_C &= \\
R_E &= 400 \text{ } \Omega \\
I_{R2} &= \\
R_2 &= 1.8 \text{ k}\Omega \\
\end{align*}
\]
2. All of these questions refer to the circuit above (problem 1d).
 a) Is the transistor operating in the active region? Show your evidence.
 Yes No

 b) If $\beta = 150$, approximately how big is that I_B that we neglected? You may use the I_C found in problem 1d.

 c) Compare this value to I_{R2}. Was it reasonable to neglect I_B? (if $I_B < 10\%$ of I_{R2}, then yes)

 d) If we actually built this circuit, with the resistors above, what effect would the actual I_B have on I_C? That is would I_C be lower, higher or the same as you found earlier? Hint: would V_B be higher or lower? Would V_E be higher or lower? Would I_E be higher or lower? Then stick with the $I_C \approx I_E$ assumption.
 I_C would be: lower higher same
 (circle one)

 e) If the v_s signal were applied at the base, an AC signal would also appear at the collector. How much larger would it be. (What is the signal voltage gain).

Answers
1 a) $V_E = 2.4 \text{ V}$, $V_{CE} = 5 \text{ V}$, $I_C = 1.2 \text{ mA}$, and $V_{CC} = 11 \text{ V}$
 b) $V_B = 2.4 \text{ V}$, $V_{CC} = 18 \text{ V}$, $V_E = 1.7 \text{ V}$, $R_E = 425$, $V_C = 8 \text{ V}$, $R_C = 2.5 \text{ k}$
 c) $V_E = 2.0 \text{ V}$, $V_{CE} = 7 \text{ V}$, $R_C = 600 \text{ k}$, and $V_B = 2.7 \text{ V}$, $I_{R2} = 1.5 \text{ mA}$, $R_1 = 6.2 \text{ k}$
 d) $I_E := 11.57 \text{ mA}$ $V_C := 8.51 \text{ V}$ $V_{CE} := 5.96 \text{ V}$ $V_B := 3.246 \text{ V}$ $I_{R2} := 1.475 \text{ mA}$ $R_2 := 2.2 \text{ k}$

2. a) Yes, $V_{CE} > 0.2 \text{ V}$ b) $I_B := 0.077 \text{ mA}$ c) OK to neglect d) lower e) 3.73