Name:

ECE 1050 homework # 22 Due: Fri, 11/21/03

Fill in the blanks in the following circuits. Since these calculations are very simple, you may simply write down the answer without showing work.

1. \[R \cong 330 \Omega \quad V_R = _
6. \(I_T = \) \(V_{D1} = \)

\[\begin{array}{c}
\text{12V} \\
\text{R1} := 150 \Omega \\
\text{R2} := 820 \Omega \\
\text{R3} := 1 \text{k} \Omega \\
\end{array} \]

\(I_{D1} = \)

\(I_{D2} = \)

\(V_{D2} = \)

\(I_{R1} = \)

\(I_{R2} = \)

\(I_{R3} = \)

7. \(I_T = \) \(V_{D1} = \)

\[\begin{array}{c}
\text{12V} \\
\text{R1} := 150 \Omega \\
\text{R2} := 820 \Omega \\
\text{R3} := 1 \text{k} \Omega \\
\end{array} \]

\(I_{D1} = \)

\(I_{D2} = \)

\(V_{D2} = \)

\(I_{R1} = \)

\(I_{R2} = \)

\(I_{R3} = \)

8. \(V_R = \) \(R = \)

\[\begin{array}{c}
\text{6V} \\
\text{LED} \\
\end{array} \]

\(I_D = 15 \text{mA} \)

9. \(R = \)

\[\begin{array}{c}
\text{14V} \\
\text{ID} := 20 \text{mA} \\
\end{array} \]

10. \(I_{R1} := 30 \text{mA} \)

\[\begin{array}{c}
\text{12V} \\
\text{R2} := 300 \Omega \\
\end{array} \]

\(R_1 = \)

\(I_{R2} := 20 \text{mA} \)

\(R_3 = \)
Warning: If I_D turns out negative, it is actually 0 and you must recalculate everything else.

Answers

1. $V_D := 0.7 \text{ V}$ $V_R := 3.3 \text{ V}$ $I_D := 10 \text{ mA}$
2. $I_D := 0 \text{ mA}$ $V_D := 4 \text{ V}$ $V_R := 0 \text{ V}$
3. $V_D := 0.7 \text{ V}$ $V_R := 7.3 \text{ V}$ $I := 14.3 \text{ mA}$
4. $I := 0 \text{ mA}$ $V_D := -8 \text{ V}$ $V_D := 0 \text{ V}$ $V_R := 0 \text{ V}$
5. $V_{D1} := 0.7 \text{ V}$ $V_{D2} := -1.3 \text{ V}$ $I_1 := 42.3 \text{ mA}$
6. $I_{D2} := 0 \text{ mA}$ $V_{D1} := 0.7 \text{ V}$ $V_{R2} := 13.8 \text{ mA}$ $I_{R1} := 1 \text{ mA}$
7. $V_{D1} := 0.7 \text{ V}$ $V_{D2} := 0.7 \text{ V}$ $I_{R1} := 0 \text{ mA}$
8. $V_R := 4 \text{ V}$ $R := 267 \Omega$
9. $R := 50 \Omega$
10. $R := 233 \Omega$ $R := 150 \Omega$
11. $I_D := 50 \text{ mA}$ $R := 120 \Omega$ $P_R := 0.3 \text{ W}$ $P_D := 0.6 \text{ W}$
12. $I_L := 40 \text{ mA}$ $I_R := 50 \text{ mA}$ $I_D := 10 \text{ mA}$ $P_R := 0.3 \text{ W}$ $P_D := 0.12 \text{ W}$
13. $I_D := 0 \text{ mA}$ $I_L := 56.3 \text{ mA}$ $V_L := 11.3 \text{ V}$ $P_R := 0.38 \text{ W}$ $P_D := 0 \text{ W}$