1. Fill in the blanks in the circuits below and on the next page. You may neglect the base bias current (I_b).

a)
\[I_C = \quad \quad R_C := 3 \text{k}\Omega \]
\[V_B := 3.1 \text{V} \quad \quad V_C := 7.4 \text{V} \quad \quad V_{CE} = \quad \quad V_E = \quad \quad R_E := 2 \text{k}\Omega \]

b)
\[R_1 := 130 \text{k}\Omega \]
\[V_B = \quad \quad I_{R2} := 0.12 \text{mA} \quad \quad R_2 := 20 \text{k}\Omega \quad \quad R_C = \quad \quad V_C = \quad \quad V_{CE} := 6.3 \text{V} \quad \quad V_E = \quad \quad R_E = \]

c)
\[R_1 = \quad \quad I_C := 5 \text{mA} \quad \quad R_C = \quad \quad V_C := 9 \text{V} \quad \quad V_{CE} = \quad \quad V_E = \quad \quad R_2 := 1.8 \text{k}\Omega \quad \quad R_E := 400 \Omega \]
2. All of these questions refer to the circuit above (problem 1d).
 a) Is the transistor operating in the active region? Show your evidence.
 Yes No

 b) If $\beta = 150$, approximately how big is that I_B that we neglected? You may use the I_C found in problem 1d.

 c) Compare this value to I_{R2}. Was it reasonable to neglect I_B? (if $I_B < 10\%$ of I_{R2}, then yes)

 d) If we actually built this circuit, with the resistors above, what effect would the actual I_B have on I_C? That is would I_C be lower, higher or the same as you found earlier? Hint: would V_B be higher or lower? Would V_E be higher or lower? Would I_E be higher or lower? Then stick with the $I_C = I_E$ assumption.
 IC would be: lower higher same
 (circle one)

 e) If the v_s signal were applied at the base, an AC signal would also appear at the collector. How much larger would it be. (What is the signal voltage gain).

 Answers
 1. a) $V_E = 2.4\, V$, $V_{CE} = 5\, V$, $I_C = 1.2\, mA$, and $V_{CC} = 11\, V$
 b) $V_B = 2.4\, V$, $V_{CC} = 18\, V$, $V_E = 1.7\, V$, $R_E = 425$, $V_C = 8\, V$, $R_C = 2.5\, k$
 c) $V_E = 2.0\, V$, $V_{CE} = 7\, V$, $R_C = 600$, and $V_B = 2.7\, V$, $I_{R2} = 1.5\, mA$, $R_i = 6.2\, k$
 d) $I_E := 11.57\cdot mA$ $V_C := 8.51\cdot V$ $V_{CE} := 5.96\cdot V$ $V_B := 3.246\cdot V$ $I_{R2} := 1.475\cdot mA$ $R_2 := 2.2\cdot k$

 2. a) Yes, $V_{CE} > 0.2\, V$ b) $I_B := 0.077\cdot mA$ c) OK to neglect d) lower e) 3.73