1. a) Determine the transfer function V_o/V_i. **Hint:** Reverse the order of R_1 and C, and suppose the output were tapped from the point between C and R_1. Then use a voltage divider.

b) Plot $|V_o/V_i|$ versus ω.

c) Find the cutoff frequency, ω_c.

2. a) Determine the transfer function V_o/V_i. **Hint:** Use a Thevenin equivalent to reduce the two R's to a single R.

b) Plot $|V_o/V_i|$ versus ω.

c) Find the cutoff frequency, ω_c.
For the band-pass filter shown above, calculate the following quantities:

a) \(\omega_0 \)

b) \(f_0 \)

c) \(\omega_{C1} \) and \(\omega_{C2} \)

d) \(\beta \) and \(Q \)

For the band-pass filter shown above, calculate the following quantities:

Hint: Use a Thevenin equivalent for the R's.

a) \(\omega_0 \)

b) \(\omega_{C1} \) and \(\omega_{C2} \)

c) \(\beta \)

d) \(Q \)