The above circuit is from Lab 4, but a number of circuit changes have been made. Note that voltage v_2 is a triangle waveform, and v_3 is a Pulse-Width Modulation (PWM) waveform.

Plot v_2 and v_3. Assume $v_2 = 0V$ at $t=0$.

a) We start by finding the value of v_2 where the first comparator op-amp switches.

Suppose v_1 is high. $v_1 = 15V$ supply - $1V = 14V$. That is, $v_1 = 14V$, which is the positive rail voltage.

v_1 will switch when the voltages at the + and - inputs are equal. That is, v_1 switches when $v_+ = v_- = 0V$.

We have the following picture:

We have $v_+ = \frac{v_1 R_1 + v_2 R_2}{R_1 + R_2}$

Now we solve for v_2.

\[v_+ = \frac{v_1 R_1}{R_1 + R_2} + \frac{v_2 R_2}{R_1 + R_2} \]

or
\[OV = \frac{v_1 R_1}{R_1 + R_2} + \frac{v_2 R_2}{R_1 + R_2} \]

or
\[\Delta v = v_1 R_1 + v_2 R_2 \]

or
\[v_2 = -\frac{v_1 R_1}{R_2} = -14V \cdot \frac{10k\Omega}{14k\Omega} = -10V \]

By symmetry, \(v_2 \) will switch at \(\pm 10V \).

\[v_2 \uparrow 10V \]
\[-10V \downarrow \]
\[t/4 \text{ (one-fourth of period)} \]

We now find the slope of \(v_2 \).

When \(v_1 \) is high, we have current \(i = \frac{v_1}{R_3} \)

because \(v_- = v_+ = 0V \).

Current \(i \) changes \(C \) : \[v_c(t) = \frac{1}{C} \int_0^t i(t)\,dt + v_c(0) \]

Using \(v_c(0) = 0V \), since \(v_2(0) = 0 \), we have

\[v_c(t/4) = 10V = \frac{1}{C} \int_0^t \frac{v_1}{R_3} \,dt = \frac{1}{R_3C} \int_0^t \frac{14V \pm}{14k\Omega \cdot \frac{1}{2} \mu F} \]

or

\[v_c(t/4) = 10V = 2kV/s \cdot t \Rightarrow t = 5 \text{ ms} \]
b) v_3 is the output of a comparator. v_3 will be equal to $+v_{rail} = 15V - 1V = 14V$ when $v_+ > v_-$. That is, $v_+ > v_2$.

We have a v-divider for v_+:

$$v_+ = 15V \cdot \frac{3k\Omega}{3k\Omega + 12k\Omega} = 3V$$

So the comparator output is high when $v_2 < 3V$.

The falling edge of v_3 occurs when $v_2 = 3V$.

$$v_2 = \frac{10V \cdot t}{5ms} = 3V \Rightarrow t = \frac{3V(15ms)}{10V} = 1.5ms$$