a) Calculate roots of characteristic eq'n for \(v(t) \).

b) Is response over-, under-, or critically damped?

c) What \(R \) yields damped freq at 6 kHz rad/s?

d) Find \(\lambda \) of characteristic eq'n for \(R \) found in (c).

e) Find \(R \) for critically damped response.

\[\text{Ans: a)} \quad s_1 = -5k / s, \quad s_2 = -20k / s \quad \text{(units are actually kHz rad/s)} \\
\text{b)} \quad \text{overdamped} \\
\text{c)} \quad R = 7.8125 \ \text{k}\Omega \\
\text{d)} \quad s_1 = -8k + j6k / s, \quad s_2 = -8k - j6k / s \quad \text{(actually kHz rad/s)} \\
\text{e)} \quad R = 6.25 \ \text{k}\Omega \]

\[\text{Sln: a)} \quad \text{From Kirchhoff's law, we know the total current } \\
\text{flowing out of the top center node is zero:} \\
\]

\[i_R + i_L + i_C = 0A \]

\[\text{We calculate each of the currents:} \]

\[i_R = \frac{v}{R} \quad i_L = ? \quad \text{We have to start with } \frac{v}{L} \frac{di_L}{dt} \]

\[\text{and solve for } i_L. \]

\[\text{Multiply both sides of } v = L \frac{di_L}{dt} \text{ by } dt \text{ and integrate:} \]

\[\int_{t' = 0}^{t} L \frac{di_L}{dt} \cdot dt' = \int_{t' = 0}^{t} \frac{v}{L} \cdot dt' \quad \text{we use } t' \text{ as the dummy variable of integration to avoid confusion with time } t. \]

\[\text{Furthermore, the lower and upper limits of integration to the type of differential: } t' \text{ for } dt', \quad i_L(t) \text{ for } di_L. \]

\[\text{The limits of integration to the } t' \text{ must be evaluated at the same points in time: } t' = 0 \text{ and } i_L(t = 0), \text{ and } t = t' \text{ and } i_L(t'). \]
The right-hand side of the preceding equation simplifies:

\[
\int_{t'=0}^{t'=t} r \, dt' = \int_L \frac{di_L}{i(t)=i_L(t=0)}
\]

Solving for \(i_L(t) \) by moving the \(i_L(t=0) \) to the other side gives:

\[
i_L(t) = \frac{1}{L} \int_{t'=0}^{t'=t} r \, dt' + i_L(t=0)
\]

Finally, for \(i_C \), we use \(i_C = C \frac{dv}{dt} \).

For \(i_R + i_L + i_C = 0 \) we have:

\[
\frac{1}{R} \int_{t'=0}^{t'=t} v \, dt' + i_L(t=0) + C \frac{dv}{dt} = 0 \, A
\]

To eliminate the integral, we differentiate both sides. (This also gets rid of \(i_L(t=0) \), which is a constant.)

\[
\frac{1}{R} \frac{dv}{dt} + \frac{1}{L} v + C \frac{d^2 v}{dt^2} = 0 \, A/s \quad \text{(at time } t)\]

Note that \(\frac{d}{dt} \int_{t'=0}^{t'=t} v \, dt' = v(t) \) because the rate of change of the integral of \(v \) at time \(t \) is just \(v(t) \):

\[\text{change in } \int v \, dt' \text{ in time } dt' \text{ at absolute time } t \]

The rate of change of \(\int v \, dt' \) at time \(t \) is

\[
\lim_{dt' \to 0} \frac{1}{dt'} v(t) \cdot dt' = \lim_{dt' \to 0} v(t) = v(t).
\]
Now try sol'n \(v(t) = Ae^{st} \) in diff. eq'n:

\[
\frac{dv}{dt} = AESe^{st} \\
\frac{d^2v}{dt^2} = A\frac{d^2}{dt^2}e^{st}
\]

\[
\frac{1}{R}Ase^{st} + \frac{1}{L}Ae^{st} + CAs^2e^{st} = 0 \quad \text{A/s}
\]

Note: \(A \) is some constant we must determine, and \(s \) is another """""". We determine \(s \) from the characteristic eq'n we obtain by factoring \(Ae^{st} \) out of the above eq'n:

\[
\left(\frac{1}{R}S + \frac{L}{C} + Cs^2 \right) Ae^{st} = 0 \quad \text{A/s}
\]

Clearly, either \(Ae^{st} = 0 \) or \(\frac{1}{R}S + \frac{L}{C} + Cs^2 = 0 \).

If \(Ae^{st} = 0 \) then \(v(t) = 0 \) always. This is impossible since we can build an RLC and observe that \(v(t) \neq 0 \). We conclude that, if \(Ae^{st} \) does indeed work as a sol'n,

\[
\frac{1}{R}S + \frac{L}{C} + Cs^2 = 0. \quad \text{This is the characteristic eq'n.}
\]

This is a quadratic eq'n that we put in a convenient form by dividing thru by \(C \):

\[
\frac{s^2}{RC} + \frac{L}{LC} = 0
\]

We also define a convenient notation:

\[
s^2 + 2\alpha s + \omega_0^2 = 0 \quad \kappa = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}
\]

We solve for \(s \) and discover there are two sol'ns:

\[
s_1, s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}
\]
case I: If \(\alpha > \omega_0 \) we get \(s_1, s_2 \) real and our \(v(t) \) will consist of the sum of two decaying exponentials. (Note that \(s_1, s_2 < 0 \) so \(e^{s_1t} \) and \(e^{s_2t} \) decay.)

\[
v(t) = A_1e^{s_1t} + A_2e^{s_2t} \quad \text{overdamped}
\]

case II: If \(\alpha = \omega_0 \) we get \(s_1 = s_2 = \alpha \) real and our \(v(t) \) will consist of the sum of a decaying exponential and \(t \) times that same decaying exponential. (Note that we have not explained why this happens, but we get this result if we take the limit of the case I solution as \(s_1 - s_2 \to 0 \).)

\[
v(t) = (D_1 + D_2) e^{-\alpha t} \quad \text{critically damped}
\]

case III: If \(\alpha < \omega_0 \) we get \(s_1, s_2 \) complex and conjugate. Our \(v(t) \) will consist of a sinusoid (at angular frequency \(\omega_d = \sqrt{\omega_0^2 - \alpha^2} \)) multiplied by an exponentially decaying envelope \(e^{-\alpha t} \).

\[
v(t) = (B_1 \cos \omega_d t + B_2 \sin \omega_d t) e^{-\alpha t}
\]

Having found \(s_1 \) and \(s_2 \), we find \(A_1 \) and \(A_2 \) (or \(D_1, D_2 \) or \(B_1, B_2 \)) by making our \(v(t) \) satisfy initial conditions (i.e. at \(t = 0^+ \)): \(v(t = 0^+) \) and \(\frac{dv}{dt} (t = 0^+) \). (See later problems.)

We are now ready to answer part (a):

The characteristic equation roots are \(s_1, s_2 = \frac{-\alpha \pm \sqrt{\omega_0^2 - \omega_d^2}}{2} \)

\[
\alpha = \frac{1}{2RC} = \frac{1}{2 \cdot \frac{kF}{\mu} \cdot \frac{8nF}{80 \mu}} = \frac{1}{8 \ \text{rad/s}} = 12.5 \ \text{kHz}\n\]
\[w_0^2 = \frac{1}{LC} = \frac{1}{1.25 \text{ H} \times 8 \text{ nF}} = \frac{1}{10 \text{ n}} = 100 \text{ rad/s}^2 \]
\[\sqrt{\frac{2}{w_0^2} - \omega^2} = \sqrt{(12.5k)^2 - (10k)^2} \text{ rad/s} \]
\[= 2.5k \sqrt{5^2 - 4^2} \text{ rad/s} \]
\[= 2.5k \cdot 3 = 7.5k \text{ rad/s} \]

\[s_1, s_2 = -12.5k \pm 7.5k \text{ rad/s} \]

\[s_1 = -5k \text{ rad/s}, \quad s_2 = -20k \text{ rad/s} \]

b) \(\alpha > w_0 \) (real roots \(s_1 \neq s_2 \)) so is overdamped.

c) \(w_d = \sqrt{w_0^2 - \alpha^2} = 6k \text{ rad/s} \) desired

\[w_0^2 = \frac{1}{LC} \text{ unaffected by } R \text{ is still } (10k)^2 \text{ rad/s}^2 \]

\[w_d^2 = w_0^2 - \alpha^2 \text{ from squaring both sides of } w_d = \sqrt{w_0^2 - \alpha^2} \]

\[\text{or } \alpha^2 = w_0^2 - w_d^2 \quad \text{or } \alpha = \sqrt{w_0^2 - w_d^2} = \sqrt{(10k)^2 - (6k)^2} \text{ rad/s} \]

\[\text{or } \alpha = 8k \text{ rad/s} \]

Now \(\alpha = \frac{1}{2RC} \Rightarrow R = \frac{1}{2 \cdot 8k \cdot 8n} = 1 \text{ rad/s} = 1M \text{ rad/s} \]

\[R = 7.8125 \text{ k} \Omega \]

d) \(s_1, s_2 = -\alpha \pm \sqrt{\alpha^2 - w_0^2} = -8k \pm j6k \text{ rad/s} \) (since \(w_d = 6k \text{ rad/s} \))

e) Critically damped when \(s_1 = s_2 \Rightarrow \alpha = w_0 = 10k \text{ rad/s} \)

\[R = \frac{1}{2 \cdot 10k \cdot 8n} = \frac{1}{160} \text{ rad/s} = 1M = 6.25 \text{ k} \Omega \]