1. a. (5 points)

Calculate v_1.

b. (5 points)

Calculate i_1.

ans: a) 40 V
b) 2 A
sol'n: (a) The 100 V source is directly across $20 \, k\Omega \parallel 30 \, k\Omega$ in series with $8 \, k\Omega$. Thus, the rest of the circuit is irrelevant in the calculation of v_1.

![电路图](image)

$20 \, k\Omega \parallel 30 \, k\Omega = 10 \, k\Omega \cdot 2 || 3 = 10 \, k\Omega \cdot \frac{2 \cdot 3}{2 + 3} = 10 \, k\Omega \cdot \frac{6}{5} = 12 \, k\Omega$

Now we have a voltage divider.

$v_1 = 100 \, V \cdot \frac{8 \, k\Omega}{12 \, k\Omega + 8 \, k\Omega} = 40V$

sol'n: (b) The 10 A source current is in series with $40 \, k\Omega \parallel 10 \, k\Omega$. Thus, all of the 10 A must flow through the $40 \, k\Omega \parallel 10 \, k\Omega$, and the rest of the circuit is irrelevant in the calculation of i_1. We use the current divider formula, and we may ignore the $100 \, k\Omega$ resistor.

![电路图](image)

$i_1 = 10 \, A \cdot \frac{10 \, k\Omega}{10 \, k\Omega + 40 \, k\Omega} = 2 \, A$
2. (30 points)

Derive an expression for \(i_3 \). The expression must not contain more than the circuit parameters \(V_a, V_b, i_a, R_1, R_2, \) and \(R_3 \).

\[i_3 = \frac{V_a R_2 + V_b (R_1 + R_2) - i_a R_1 R_2}{R_1 R_2 + R_3 (R_1 + R_2)} \]

sol'n: Using passive sign convention, label voltage drop and current measurement polarities.

Use Kirchhoff's laws:

- sum v drops around loop = 0
- sum i out of node = 0

v drops for loop on left, using Ohm's law for \(v_1 \):

\[V_a - i_1 R_1 - i_2 R_2 = 0 \text{ V} \]

Middle loop would include current source, so use slightly larger loop with \(R_2 \) on left and \(V_b \) on right:

\[i_2 R_2 - i_3 R_3 + V_b = 0 \text{ V} \]

Now sum currents out of top node (that consists of the two top nodes connected by a wire).

Note: We are always allowed to combine nodes connected by wires.

\[-i_1 + i_2 + i_a + i_3 = 0 \text{ A} \]

We now have three equations in three unknowns. We solve for \(i_3 \). Use the second equation to eliminate \(i_2 \):
\(i_2 = \frac{i_3 R_3 - V_b}{R_2} \)

Use the first equation to eliminate \(i_1 \):
\[
i_1 = \frac{V_a - i_2 R_2}{R_1} = \frac{1}{R_1} \left[V_a - \left(\frac{i_3 R_3 - V_b}{R_2} \right) \right] = \frac{1}{R_1} \left(V_a + V_b - i_3 R_3 \right)
\]

Substitute for \(i_1 \) and \(i_2 \) in the third equation:
\[
-\frac{1}{R_1} \left(V_a + V_b - i_3 R_3 \right) + \frac{i_3 R_3 - V_b}{R_2} + i_a + i_3 = 0 \text{ A}
\]

Solve for \(i_3 \):
\[
-\frac{1}{R_1} \left(V_a + V_b \right) - \frac{V_b}{R_2} + i_a + \frac{1}{R_1} i_3 R_3 + \frac{i_3 R_3}{R_2} + i_3 = 0 \text{ A}
\]
\[
i_3 \left(\frac{R_3}{R_1} + \frac{R_3}{R_2} + 1 \right) = \frac{1}{R_1} \left(V_a + V_b \right) + \frac{V_b}{R_2} - i_a
\]

Multiply both sides by \(R_1 R_2 \) to clear fractions:
\[
i_3 \left(R_3 R_2 + R_3 R_1 + R_1 R_2 \right) = R_2 \left(V_a + V_b \right) + R_1 V_b - i_a R_1 R_2
\]

or
\[
i_3 = \frac{V_a R_2 + V_b \left(R_1 + R_2 \right) - i_a R_1 R_2}{R_1 R_2 + R_3 \left(R_1 + R_2 \right)}
\]

Now for consistency checks to verify our answer. (Optional)

1) Consider \(i_a = 0 \), \(V_b = 0 \), and \(R_3 = 0 \):

Since \(R_2 \) is bypassed by a short, no current flows in \(R_2 \). Therefore, we can remove \(R_2 \) without changing \(i_3 \):
2) Consider \(i_a = 0 \) (open circuit) and \(R_2 = \infty \) (open circuit):

Removing \(R_2 \) and \(i_a \) leaves total voltage \(V_a + V_b \) across \(R_1 + R_3 \) in outside loop.

Therefore, we have

\[
i_3 = \frac{V_a + V_b}{R_1 + R_3}
\]

For our formula, we use the following identities:

\[
\lim_{R_2 \to \infty} \frac{R_2}{R_1 R_2 + R_4 (R_1 + R_2)} = \frac{1}{R_1 + R_3} \quad \text{and} \quad \lim_{R_2 \to \infty} \frac{R_1 + R_2}{R_1 R_2 + R_3 (R_1 + R_2)} = \frac{1}{R_1 + R_3}
\]

Making these substitutions in our formula gives

\[
i_3 = \frac{V_a + V_b}{R_1 + R_3}
\]

(3) Consider \(V_a = 0, i_a = 0 \):

\[
i_3 = \frac{V_b}{R_1 || R_2 + R_3}
\]

Our formula gives \(i_3 = \frac{V_b R_1 + R_2}{R_1 R_2 + R_3 (R_1 + R_2)} \) or \(i_3 = \frac{V_b}{R_1 || R_2 + R_3} \).

\(\checkmark \)
(4) Consider \(V_a = 0, V_b = 0 \):

\[V_a = 0 \quad \Rightarrow \quad i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

By current divider formula, we have

\[i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

Our formula gives

\[i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

(5) Consider \(i_a = 0, V_b = 0 \).

\[V_a = 0 \quad \Rightarrow \quad i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

\[i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

Our formula gives

\[i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

\[i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

Our formula gives

\[i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]

\[i_3 = -\frac{i_a R_1 \parallel R_2}{R_1 \parallel R_2 + R_3} \]
3. (30 points)

a. Derive an expression for i_2. The expression must not contain more than the circuit parameters α, V_a, i_a, R_1, and R_2.

\[R_1 + \alpha v_1 - R_2 v_1 - R_2 i_a - V_a = 0 \]

b. Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.

ans: a) $i_3 = \frac{V_a R_2 + V_b (R_1 + R_2) - i_a R_1 R_2}{R_1 R_2 + R_3 (R_1 + R_2)}$

b) Many possible answers. See solution below.

sol'n: (a) Use Kirchhoff's laws to write several equations. Then eliminate unwanted variables.

We sum currents out of top-center node:

\[-i_1 - i_a + i_2 = 0\]

Note that summing currents out of bottom-center node does not give us anything new. By Ohm's law, we also have

\[i_1 = \frac{v_1}{R_1} \]

Now, we sum voltages around a loop. We choose the outer loop because the inner loops have a current source with unknown voltage drop.

\[\alpha v_1 - v_1 + V_a - v_2 = 0 \quad \text{or} \quad (\alpha - 1)v_1 + V_a - v_2 = 0 \]

By Ohm's law, we also have

\[v_2 = i_2 R_2 \]

After the Ohm's law substitutions, we have two equations, and we may eliminate v_1.

Use the simpler equation first:

\[
\frac{v_1}{R_1} + i_a - i_2 = 0 \quad \text{or} \quad v_1 = (i_2 - i_a)
\]

Substitute for \(v_1\) in the second equation:

\[
(\alpha - 1)R_1(i_2 - i_a) + V_a - i_2R_2 = 0
\]

After some algebra, we get

\[
i_2 = \frac{(1-\alpha)i_aR_1 + V_a}{(1-\alpha)R_1 + R_2} \quad \text{units consistent} \quad \checkmark
\]

(b) There are many possible consistency checks.

1) \(i_a = 0\) and \(R_1 = 0\). Then \(v_1 = 0\), \(\alpha v_1 = 0\), and sum v's around outer loop gives \(i_2 = V_a/R_2\). Our formula also gives \(V_a/R_2\). \(\checkmark\)

2) Consider \(R_1 = 0\) and \(R_2 = 0\). As in (1), \(v_1 = 0\) and \(\alpha v_1 = 0\). Since \(R_2 = 0\) we also end up with a short across \(V_a\):

![Diagram](image)

We expect \(i_2 \to \infty\) for short across \(V_a\)

Our formula gives

\[
\lim_{R_2 \to 0} \frac{V_a}{R_2} = \infty \quad \text{for} \quad i_2 \quad \text{from (1)} \quad \checkmark
\]

3) Consider \(i_a = 0\), \(\alpha = 0\):

![Diagram](image)

Our formula gives

\[
i_2 = \frac{V_a}{R_1 + R_2} \quad \text{by Ohm's law} \quad \checkmark
\]
4) Consider $R_1 \to \infty$ (open circuit)

Clearly $i_a = i_2$ since the same current flows through elements in series.

Our formula gives:

$$i_2 = \lim_{R_1 \to \infty} \frac{(1-\alpha)i_a R_1 + V_a}{(1-\alpha)R_1 + R_2} = \lim_{R_1 \to \infty} \frac{(1-\alpha)i_a R_1}{(1-\alpha)R_1} = i_a$$

5) Consider $R_2 \to \infty$ (open circuit): We have $i_2 = 0$ since no current flows through the open circuit. Our formula gives:

$$i_2 = \lim_{R_2 \to \infty} \frac{(1-\alpha)i_a R_1 + V_a}{(1-\alpha)R_1 + R_2} = \text{const} \to 0$$

Many more consistency checks are possible.
4. (30 points)

The op amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for \(v_o\) in terms of not more than \(i_s, R_1, R_2,\) and \(R_3.\)

\[
\text{ans: } v_o = i_s \left(R_2 + R_3 + \frac{R_2 R_3}{R_1} \right)
\]

\[
\text{sol'n: Using passive sign convention, label voltage drop and current measurement polarities.}
\]

Assume an ideal op-amp since we are in linear mode and we are solving for DC conditions.

Use the standard procedure to find \(v_o:\)

1) Calculate \(v_p:\) We use Kirchhoff's law for summation of currents out of the node next to the + terminal of the op-amp. Since \(i_p = 0,\) (no current flows into the + terminal), we conclude that \(i_2 = i_p\)

By Ohm's law, it follows that \(v_p = i_s R_2\)

2) Assume \(v_n = v_p:\) Because of negative feedback, the op-amp output voltage, \(v_o,\) reaches an equilibrium level that results in \(v_n \approx v_p.\) Now we have the following model circuit:
Note that we model the – terminal of the op-amp as a voltage source with zero current flowing into it. We add this constraint on the current with the understanding that \(v_o \) must have a value that results in \(i_n = 0 \).

3) Calculate \(i'_s \), the current flowing toward the – terminal from the left: Now we observe that voltage source \(v_n \) separates the two sides of the circuit. What happens on the right side of the circuit will not affect \(i'_s \).

We use a summation of node currents at the node above \(R_1 \) to calculate the value of \(i'_s \):

\[
i'_s + i_1 + i_s = 0 \quad \text{or} \quad i'_s = -(i_1 + i_s)
\]

But we can also calculate \(i_1 \) because we have \(v_n \) across \(R_1 \):

\[
i_1 = \frac{v_n}{R_1} = \frac{i_s R_2}{R_1}
\]

4) Calculate \(i_3 \) using only the right side of the circuit: What happens on the left side of the \(v_n \) source will not affect this calculation of \(i_3 \). We use a voltage loop around the right side of the circuit.

\[
v_n - i_3 R_3 - v_o = 0 \quad \text{or} \quad i_3 = \frac{v_n - v_o}{R_3} \quad \text{or} \quad i_3 = \frac{i_s R_2 - v_o}{R_3}
\]

5) Since \(i_n = 0 \), set \(i'_s = i_3 \): Now we are saying that the two sides of the circuit DO affect each other in that \(v_o \) must have a value that causes \(i_n = 0 \).

\[
-(\frac{i_s R_2}{R_1} + i_s) = \frac{i_s R_2 - v_o}{R_3}
\]

6) Solve for \(v_o \):

\[
v_o = i_s (R_2 + R_3 + \frac{R_2 R_3}{R_1}) \quad \text{units consistent} \quad \checkmark
\]

Consistency checks:

1) By linearity and fact that we have one source, \(i_s \), we expect \(v_o \) to be directly proportional to \(i_s \). Agrees with the formula. \(\checkmark \)
2) Consider \(R_2 = 0 \): Then \(v_p = 0 \) and \(v_n = v_p = 0 \). Therefore, \(i_1 = 0 \) and \(i_3 = -i_s \). Then, \(v_o = -i_3R_3 = i_sR_3 \). Agrees with the formula. ✓

3) Consider \(R_1 = \infty \) (open circuit): \(v_n = v_p = i_sR_2 \), \(i_3 = -i_s \), and \(v_o = v_n - i_3R_3 = i_sR_2 + i_sR_3 \). Agrees with formula. ✓

4) Consider \(R_3 = 0 \): Then \(v_o = v_n = v_p = i_sR_2 \). Agrees with the formula. ✓