1. Find the current, i_L, through the inductor in the circuit below for $t > 0$ if $i_L(t = 0) = 5$ A.

$$L = 5 \, \mu H$$

$$R = 2 \, \Omega$$

2. Find the voltage, v_C, across the capacitor in the circuit below for $t > 0$ if $v_C(t = 0) = 5$ V.

$$C = 5 \, \mu F$$

$$R = 2 \, \Omega$$

3. After being open for a long time, the switch closes at $t = 0$.

$$v_g = 4V$$

$$C = 1 \, \mu F$$

$$R = 300 \, k\Omega$$

$$v_C(t=0^+) = 12V$$

a) Find an expression for $v_C(t)$ for $t \geq 0$.

b) Find the energy stored in the capacitor at time $t = 10$ ms.
4.

\[v_g = 4 \text{V} \]

\[L = 1 \mu\text{H} \]

\[i_L(t=0^+) = 12 \text{A} \]

\[t = 0 \]

\[R = 300 \text{k}\Omega \]

a) Find an expression for \(i_L(t) \) for \(t \geq 0 \). Note: Assume the initial current in the \(L \) is created by circuitry not shown in the diagram.

b) Find the energy stored in the inductor at time \(t = 10 \text{ ms} \).

5. After being zero for a long time, the value of \(v_g(t) \) changes to 9 V at \(t = 0 \) (and remains at 9 V as time increases to infinity).

\[v_g(t) \]

\[R = 2 \text{k}\Omega \]

\[C = 500 \text{pF} \]

\[v_o \]

a) Find an expression for \(v_o(t) \) for \(t > 0 \).

b) Find the current, \(i_R \), in \(R \) as a function of time.