1. After being closed for a long time, the switch opens at $t = 0$. Calculate the energy stored on the inductor as $t \to \infty$.

2. For the circuit in problem 1, write a numerical expression for $i(t)$ for $t > 0$.

3. After being open for a long time, the switch closes at $t = 0$, and $v_C(t = 0^-) = 4 \text{ V}$. Write an expression for $v_C(t > 0)$ in terms of R_1, R_2, R_3, v_s, $v_C(t = 0^-)$, and C.
4.

\[R_L \]

\[18 \text{ mA} \]

\[10 \text{ k}\Omega \]

\[3 \text{ k}\Omega \]

\[50 \text{ V} \]

\[15 \text{ k}\Omega \]

a) Calculate the value of \(R_L \) that would absorb maximum power.

b) Calculate that value of maximum power \(R_L \) could absorb.

5.

\[R_1 \]

\[v_x \]

\[i_s \]

\[R_2 \]

\[R_3 \]

\[v_s \]

\[\alpha v_x \]

Using superposition, derive an expression for \(i \) that contains no circuit quantities other than \(i_s, v_s, R_1, R_2, R_3, \) and \(\alpha \).