Ex:

\[v_s(t) = 60\cos(200kt) \text{ V} \]

a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for \(v_s(t) \), and show numerical impedance values for \(R \), \(L \), and \(C \). Label the dependent source appropriately.

b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for \(V_{\text{Th}} \) and the numerical impedance value of \(z_{\text{Th}} \).

Sol'n:

a) We calculate the impedances for the frequency-domain circuit:

\[V_s = 60 \angle 0^\circ \text{ V} \]

\[z_L = j\omega L = j200k \cdot 10 \mu \Omega = j2 \Omega \]

\[z_C = \frac{1}{j\omega C} = \frac{1}{j200k \cdot 2.5 \mu} = -j2 \Omega \]

The frequency domain circuit:

\[V_s = 60 \angle 0^\circ \text{ V} \]

\[j2 \Omega \]

\[jV_x \]

\[2 \Omega \]

\[-j2 \Omega \]

\[V_x \]
b) The Thevenin equivalent voltage is the voltage at a and b for the circuit with no load attached at a and b. We may perform a source transformation on the left side to obtain the following circuit:

\[
\begin{align*}
\mathbf{I}_s &= 30 \angle -90^\circ \, \text{A} \\
\mathbf{V}_x &= \frac{j \mathbf{V}_x}{2}
\end{align*}
\]

In the above circuit, the inductance and capacitance in parallel are equivalent to an open circuit. With the inductor and capacitor gone, we see that current from \(\mathbf{I}_s \) flows through the dependent current source. Thus, the dependent current source must have the same current as \(\mathbf{I}_s \):

\[
\frac{j \mathbf{V}_x}{2} = \mathbf{I}_s
\]

or

\[
\mathbf{V}_x = \frac{2 \mathbf{I}_s}{j} = \frac{2 \cdot 30 \angle -90^\circ}{1 \angle -90^\circ} = 60 \, \text{V}
\]

This voltage is the same as the Thevenin equivalent voltage:

\[
\mathbf{V}_{Th} = \mathbf{V}_x = 60 \, \text{V}
\]

To find the Thevenin impedance, we turn off the independent current (and remove the \(L \) and \(C \) that cancel out). Then we apply a voltage (1 V) to the a and b terminals:
We see that $V_x = 1 \, \text{V}$ and the dependent current source carries the current i_a:

$$i_a = \frac{jV_x}{2} = j\frac{1}{2} \, \text{A}$$

The Thevenin impedance is $1 \, \text{V}$ divided by the current, i_a:

$$z_{Th} = \frac{1 \, \text{V}}{i_a} = \frac{1 \, \text{V}}{j\frac{1}{2} \, \text{A}} = -j2 \, \Omega$$

Thus, we have the following Thevenin equivalent circuit:

$V_{Th} = 60 \, \text{V}$

$z_{Th} = -j2 \, \Omega$