1. The above circuit operates in linear mode. Derive a symbolic expression for v_o. The expression must contain not more than the parameters i_{s1}, i_{s2}, R_1, R_2, and R_3.

2. a) If $i_{s1} = 0 \mu A$, find the value of R_3 that will yield an output voltage of $v_o = 1 V$ when $i_{s2} = 10 \mu A$.

 b) Derive a symbolic expression for v_o in terms of common mode and differential input currents:

 $$i_{\Sigma} = \frac{i_{s1} + i_{s2}}{2} \quad \text{and} \quad i_{\Delta} = \frac{i_{s1} - i_{s2}}{2}$$

 The expression must contain not more than the parameters i_{Σ}, i_{Δ}, R_1, R_2, and R_3. Write the expression as i_{Σ} times a term plus i_{Δ} times a term.

 Hint: start by writing i_{s1} and i_{s2} in terms of i_{Σ} and i_{Δ}:

 $$i_{s1} = i_{\Sigma} + i_{\Delta} \quad \text{and} \quad i_{s2} = i_{\Sigma} - i_{\Delta}$$

3. If $i_{\Delta} = 0$ and $R_1 = R_2$, write a formula for the current flowing from left to right in R_3 as a function of not more (and possibly less) than the following terms: i_{Σ}, R_1, R_2, and R_3.

Rail voltages = ±10 V
4. Find the Thevenin equivalent of the above circuit relative to terminals a and b.

5. a) If we attach R_L to terminals a and b, find the value of R_L that will absorb maximum power.

 b) Calculate the value of that maximum power absorbed by R_L.