1. \(v_i(t) = -2 + 2 \cdot u(t) \ V \)

a. First, find a symbolic expression for \(V_o(s) \) in terms of not more than \(R_1, R_2, L, \) and \(C \). (Use numerical values for initial conditions and \(V_i(s) \).)

Then use the initial value theorem to find \(v_o(t=0+) \).

Note: The \(-2V\) in \(v_i(t) \) is present for all time, (including \(t < 0 \)).

b. Choose numerical values for \(L \) and \(C \) \(\omega \) make \(v_i(t) = v_m e^{-\alpha t} \cos(\beta t + \phi) \) where \(v_m \) and \(\phi \) are constants, \(\alpha = 1k \) /s, and \(\beta = 3k \) rad/s.

2. Given \(\omega = 400 \) rad/s and \(\frac{N_2}{N_1} = 1/3 \), find a numerical value for \(L \) and \(R \) to make \(z_L = 1 + j 1 \) \(\Omega \) where \(z_L \) is the equivalent impedance of the entire circuit.
Find a numerical expression for the current I_{BA} in the load. Use $z_L = 1 + j \Omega$.