In the above circuit, the switch moves from a to b at t = 0.

1. Find values of R and C such that the roots of the characteristic equation of the circuit for $t > 0$ are $s_1 = -800 + j600$ and $s_2 = -800 - j600$ r/s.

2. Given that no energy is stored in the inductor at time $t = 0$, find a numerical expression for $v(t)$ for $t > 0$.

Soln:

1) After $t = 0$ we have parallel RLC circuit.

$$
\begin{align*}
\frac{s^2}{RC} + \frac{s}{LC} + 1 &= 0, \\
\frac{1}{2RC} \ln \left(\frac{s + \frac{1}{RC}}{\frac{1}{2RC} - s} \right) &= 0, \\
\frac{1}{2RC} &= 300 \text{ r/s}, \\
\frac{1}{2RC} &= \frac{1}{2 \cdot 2\cdot 800 \cdot 10 \mu F}, \\
R &= \frac{1}{2RC}, \\
C &= \frac{1}{L^2} = \frac{1}{10 \mu F^2} = 10 \mu F.
\end{align*}
$$

R = 1/2 RC

\[R = \frac{1}{2 \cdot 800 \cdot 10 \mu F} \]

\[R = \frac{1}{16 \cdot 1 \mu F^2 / s} \]

\[R = 62.5 \Omega \]

\[C = 10 \mu F \]

\[R = \frac{1}{2RC} \]

2) Open wire (no current in L, discharges thru

Therein equiv of 10 mA 1/10mA. 1kΩ 2X

\[\text{At } t = 0^+ : \quad v_0(t) = v_c(0^+) = v_c(0^-) = 10V \]

\[\frac{dv(t)}{dt} \bigg|_{t=0^+} = \frac{i_c(0^+)}{C} + i_L(0^+), \quad i_c(0^+) + i_L(0^+) = 0A \]

\[i_L(0^+) = i_L(0^-) = 0A \]

\[i_R(0^+) = \frac{v_C(0^+)}{R} = \frac{10V}{R} \]

\[i_L(0^+) = \frac{-160mA}{16 \mu F} \]

\[i_L(0^+) = -160mA, \quad 16 \text{ kV/s} \]

\[\therefore i_C(0^+) = -160mA \quad \frac{dv(t)}{dt} \bigg|_{t=0^+} = -160mA \]
sol(n: 2) cont. \[v(t) = A_1 e^{-\frac{t}{600}} \cos \omega_d t + A_2 e^{-\frac{t}{600}} \sin \omega_d t, \quad t > 0 \]

\[\frac{dv(t)}{dt} \bigg|_{t=0^+} = A_2 \omega_d \quad \Rightarrow \quad A_1 = -1 \text{ kV/s} \]

\[\omega_d = 600 \text{ rad/s} \quad \eta = 800 \]

\[v(0^+) = A_1 - 10 \text{ V} \]

\[A_1 = 10 \text{ V} \]

\[A_2 = 600 \cdot 800 - 800 \cdot 10 \text{ V} = -1 \text{ kV/s} \]

\[A_2 = \frac{-16k + 8k}{0.6k} = \frac{-8k}{0.6k} = -\frac{80}{6} = -13\frac{1}{3} \text{ V} = -40 \frac{1}{3} \text{ V} \]

\[v(t) = 10 e^{-\frac{t}{600}} \cos 600t - \frac{40}{3} e^{-\frac{t}{600}} \sin 600t \text{ V} \]
3.

\begin{center}
\includegraphics[width=0.5\textwidth]{circuit.png}
\end{center}

\[T = \text{one period of } v_i(t) = 3\pi \mu s \]

a. Find values of \(C \) and \(L \) for the above filter circuit such that the transfer function equals one for the fundamental frequency and zero for the third harmonic of \(v_i(t) \), also shown above.

b. Find numerical values of coefficients \(a_0, a_1, a_2, b_1, \) and \(b_2 \) for the Fourier series for \(v_i(t) \):

\[v_i(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t) \]

\[\text{Solution: a) } \omega_1 = \frac{2\pi}{T} = \frac{2\pi}{3\pi\mu s} = \frac{2}{3} \text{ M/}\mu s \]

\[\omega_2 = 3\omega_1 = 2 \text{ M/}\mu s \]

\[\omega_k \text{ for transfer function when } \omega \text{ across rails } = 0 \text{ rad}, \]

i.e., when \(\frac{1}{sC} + sL_1 = 0 \), \(L_1 = 10 \mu H \), or \(\omega = \frac{1}{L_1 C} \)

and when \(\left(\frac{1}{sC} + sL_1 \right) sL_2 = \omega \), we get transfer func = 1

2nd condition: \(\left(\frac{1}{sC} + sL_1 \right) sL_2 = \frac{L_2 + s^2 L_1 L_2}{sC + s(L_1 + L_2)} \)

\[u = \frac{L_1 L_2}{L_1 + L_2} \cdot \frac{s^2 + \frac{1}{L_1 C}}{s^2 + \frac{1}{(L_1 + L_2) C}} = \infty \]
\[\text{Soln: 3a) cont. } \]

2nd condition gives \(\infty \) when denominator = 0:

\[\frac{s^2 + \frac{1}{(L_1 + L_2)C}}{0} = 0 \]

or \(\omega_1^2 = \frac{1}{L_1(C + 1)} \)

Back to first condition: \(\omega_3^2 = \frac{1}{L_1 C}, \quad C = \frac{\omega_3^2}{L_1} \)

\[C = \frac{\frac{1}{10 \mu (2 \, \text{M}^2)^2}}{40} = \frac{25 \mu F}{40 \cdot 25} = 25 \text{nF} \]

\[C = 25 \text{nF} \]

2nd condition: \(L_1 + L_2 = \frac{1}{\omega_3^2 C} = \frac{1}{(\frac{2}{3})^2 \cdot 25 \text{nF}} \times \frac{\lambda \text{mH}}{100} \)

\[\lambda = 90 \, \text{mH} \]

\[L = L_2 = 80 \mu \text{H} \]

b) \(a_v = \text{ave value of } v_i(t) = 4 \text{V} \) by inspection, \(a_v = 4 \text{V} \)

\(v_i(t) \) has shift-flip symmetry \(\Rightarrow \text{even terms} = 0 \).

\(a_0 = 0 \quad b_0 = 0 \)

\[a_1 = \frac{2}{T} \int_0^T v_i(t) \cos(\omega_0 t) \, dt = \frac{2}{T} \int_0^{T/2} \left(\frac{4}{T} + \frac{4 \pm T/2}{T} \right) \cos(\omega_0 t) \, dt \]

Subtract DC offset \(a_0 = 4 \text{V} \) from \(v_i(t) \), \[\text{doesn't change } a_1 \]

\[a_1 = \frac{4}{T} \int_0^{T/2} \cos(\omega_0 t) \, dt, \quad \omega_0 = \frac{2\pi}{T} \]

Using table of integrals:

\[a_1 = \frac{4}{T^2} \left[\frac{1}{\omega_0^2} \cos(\omega_0 t) + \frac{t}{\omega_0} \sin(\omega_0 t) \right]_0^{T/2} \]

Note \(\omega_0 \cdot \frac{T}{2} = \frac{2\pi}{T} \cdot \frac{T}{2} = \pi \)

\[\cos \pi = 1 \quad \cos \frac{\pi}{2} = 0 \]

\[\sin \pi = 0 \quad \sin \frac{\pi}{2} = 1 \]

\[a_1 = \frac{32}{T^2} \cdot \frac{\omega_0^2}{(2\pi)} \cdot (1 - (1)) = \frac{-32 \cdot \frac{2}{4\pi^2}}{\frac{16}{\pi^2}} = -\frac{16}{\pi^2} \]

\[a_1 = -\frac{16}{\pi^2} \]
sol'n: 3.b) cont. \[b_1 = \frac{4}{T} \int_0^{T/2} \frac{4}{T/2} \sin(w_0 t) \, dt \]

\[b_1 = \frac{4^2}{T^2} \left[\left. \frac{1}{w_0^2} \left(\frac{1}{2} \sin w_0 t - \frac{1}{w_0} \cos w_0 t \right) \right|_0^{T/2} \right] \]

\[= \frac{32}{T^2 (2\pi)} \left[-\frac{1}{2} (-1) \right] = \frac{32}{4\pi} = \frac{8}{\pi} \]

\[b_1 = \frac{8}{\pi} \]

Note: only the \(\frac{1}{2} \) cos term is nonzero.