1. (22 pts) Find the values below. Show your work.
 Note: feel free to show answers & work right on the schematic
 a) \(R_4 = ? \)
 b) \(R_3 = ? \)
 c) \(I_S = ? \)

![Circuit Diagram](image)

2. (18 pts) Use the method of superposition to find \(V_{R_2} \) and \(I_{R_3} \).
 Be sure to redraw the circuit as needed and to clearly show and circle your intermediate results.

![Circuit Diagram](image)

3. (24 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is \(R_L \).

![Circuit Diagram](image)

b) Find the load current using your Thévenin equivalent circuit.

c) Choose a different value of \(R_L \) so as to maximize the power dissipated in \(R_L \). Find that maximum power.
4. (20 pts) Use nodal analysis to find the readings of the two ideal meters.

You **MUST** show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

![Circuit Diagram](image)

5. (10 pts) This circuit has been hooked up for a long time.
Find the voltage across the capacitor and the energy stored in the capacitor.

![Circuit Diagram](image)

6. (6 pts) Find C_{eq} between terminals a and b.

![Circuit Diagram](image)

Answers

1. a) 1.76-kΩ
 b) 890-Ω
 c) 29-mA

2. $16\cdot V + 20\cdot V = 36\cdot V$
 $4\cdot mA - 4\cdot mA = 0\cdot mA$

3. a) 500-Ω
 b) 7.7-mA
 c) 185-mW
 d) 19.25-V

4. a) 1.5-V
 b) 55-mA

5. a) 6.455-V
 b) 857-mJ

6. a) 3.6-μF
 b) 3-μF
 c) 2-μF
 d) 6-μF