1. (20 pts) Analysis of a circuit (not pictured) yields the characteristic equation below.

\[0 = s^2 + 800s + 160000 \]

Further analysis yields the following initial and final conditions:

\[i_L(0) = 40\, \text{mA} \quad v_L(0) = -12\, \text{V} \quad v_C(0) = 5\, \text{V} \quad i_C(0) = 60\, \text{mA} \]
\[i_L(\infty) = 120\, \text{mA} \quad v_L(\infty) = 0\, \text{V} \quad v_C(\infty) = 15\, \text{V} \quad i_C(\infty) = 0\, \text{mA} \]

Write the full expression for \(i_L(t) \), including all the constants that you find. Include units in your answer.

2. (24 pts) a) A feedback system is shown in the figure. What is the transfer function of the whole system, with feedback.

\[H(s) = \frac{X_{out}(s)}{X_{in}(s)} = ? \]

Simplify your expression for \(H(s) \) so that the denominator is a simple polynomial, or, better still, a multiple of simple polynomials.

b) Find the value of \(K \) to make the transfer function critically damped.

c) If \(K \) is greater than this value the system will be: underdamped or overdamped

Circle one

d) Does the transfer function have a zero? Answer no or find the \(s \) value(s) of the zero(s).
3. (36 pts) The switch has been up in position 1 for a long time and is switched down to position 2 (as shown) at time \(t = 0 \).

SHOW YOUR WORK, no credit for guesses!

a) What are the final conditions of \(i_L \) and the \(v_C \)?

\[
\begin{align*}
 i_L(\infty) &= ? \\
 v_C(\infty) &= ?
\end{align*}
\]

b) Find the initial condition and initial slope of \(i_L \) that you would need to have in order to find all the constants in \(i_L(t) \). Don't find \(i_L(t) \) or it's constants, just the initial conditions.

c) Find the initial condition and initial slope of \(v_C \) that you would need to have in order to find all the constants in \(v_C(t) \). Don't find \(v_C(t) \) or it's constants, just the initial conditions.

4. (20 pts) The transformer shown in the circuit below is ideal. It is rated at 300/100 V, 1.0 kVA, 60 Hz.

Find the following:

a) The primary current (magnitude).

\[
|I_1| = ?
\]

b) The secondary current (magnitude).

\[
|I_2| = ?
\]

c) The secondary voltage (magnitude).

\[
|V_2| = ?
\]

d) The complex power (\(P \) and \(Q \)) used by the load.

\[
S_L = ?
\]

e) Is this transformer operating within its ratings? Show your evidence.

Answers

1. 120-mA - 80-mA-e\(\frac{400}{t^2} \) - 92 A-e\(\frac{400}{t^2} \) - 2160 A-e\(\frac{400}{t^2} \)

2. a) \(\frac{2 \cdot s + 3}{s^2 + 80 \cdot s + 1200 + \frac{40}{K}} \) - b) 0.1 - c) overdamped - d) -20 - \(\left\{ \frac{3}{2} \right\} \)

3. a) 50-mA - 30-V \-

3. c) 36-V \-

4. a) 3.72-A \-

4. b) 11.15-A \-

4. c) 70.5-V \-

4. d) 746 + 249-j VA \-

4. e) NO 11.15-A > 10-A