Consider a company manufacturing various types of integrated circuits (IC). Let \(S \) be the sample space of all possible IC types that any given product manufactured by this company can be. Let’s define the following events:

- \(A \): The IC uses 32-bit technology
- \(B \): The IC uses 64-bit technology
- \(C \): The IC is a SDRAM (an older type of memory chip)
- \(D \): The IC is a RDRAM (a newer type of memory chip)
- \(E \): The IC is manufactured at the company’s plant in Taiwan

We are also given the following information:

- All chips manufactured by this company use either 32-bit or 64-bit technology.
- \(P(A) = 0.4, P(C) = 0.1, P(D) = 0.5, P(E) = 0.45, P(A \cap C) = 0.1, P(A \cap D) = 0.2, P(A \cap E) = 0.15, P(D \cap E) = 0.25 \) and \(P(A \cap D \cap E) = 0.05 \).

1. Prove that the company does not produce any 64-bit SDRAM chips. \textit{Hint: Show that the probability of such a chip is 0.}

2. Draw the Venn diagram showing all events. \textit{Note: Show all possible intersections unless you are sure two events don’t intersect. For instance, a chip can’t be a SDRAM and a RDRAM at the same time.}

3. Compute \(P(B \cap C \cap D) \).

4. Compute \(P(D \cup E \cup A) \).

5. Compute \(P(B \cap D' \cap E') \). \textit{Hint: Use the Venn diagram.}
5) a) 64-bit SDRAM chip \(\Rightarrow \) B n C

We want to show \(P(B \cap C) = 0 \)

Since all chips are either 32-bit (A) or 64-bit (B), events A and B form a partition of S. Then, using the rule of total probability:

\[
P(C) = P(C \cap A) + P(B \cap C)
\]

\[
0.1 = 0.1 + P(B \cap C) \Rightarrow P(B \cap C) = 0.
\]

b) Notice that:

- \(A, B \) form partition
- \(C \cap B = \emptyset \) as shown in part a
- \(C \cap D = \emptyset \) since a chip can't both be a SDRAM and a RDRAM at the same time

c) \(B \cap C \cap D = (B \cap C) \cap D = \emptyset \cap D = \emptyset \)

so \(P(B \cap C \cap D) = 0 \)

d) \(P(D \cup E \cup A) = P(D) + P(E) + P(A) - P(D \cap E) - P(D \cap A) - P(E \cap A) + P(D \cap E \cap A) \)

\[
= 0.5 + 0.45 + 0.4 - 0.25 - 0.2 - 0.15 + 0.1
\]

\[
= 0.8
\]

e) From Venn diagram, notice

\(B \cap D' \cap E = (A \cup D \cup E)' \)

so \(P(B \cap D' \cap E) = 1 - P(A \cup D \cup E) \)

\[
= 1 - P(D \cup E \cup A) = 1 - 0.8 = 0.2
\]

Without Venn Diagram (harder)

\((B \cap D' \cap E)' = B' \cup (D' \cap E)' \)

\(= A \cup (D')' \cup (E)' \)

\(= A \cup D \cup E \)